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Abstract

Since callers encountering busy signals often want to redial, modern commu-
nication networks have been designed to provide automatic redialing. Redialing
services commonly have two parameters: a maximum number n of retries and a
total duration 7 over which retries are to be made. Typically, retries are made
at evenly spaced time intervals of length 7/n until either the call succeeds or n
retries have failed. This rule has an obvious intuitive appeal; indeed, among the
main results of this paper are proofs that 7/n-spacing is optimal in certain basic
models of called-number behavior. However, it is easy to find situations where
T/n-spacing is not optimal, as the paper verifies.

All of our models assume Poisson arrivals, but different assumptions are studied
for the call durations; for a given mean, these are allowed to have the relatively
high-variance exponential distribution or the zero-variance distribution concen-
trated at a point. We approximate the probability of success for the Erlang loss
model with ¢ > 1 trunks, and we calculate exact probabilities of success for the
¢ = 1 Erlang model and the model with one trunk and constant call durations.
For the latter model, we present two intriguing conjectures, one about the optimal
choice of 7 when n = 1 and one about the optimality of the 7/n-spacing policy.
In spite of their apparent simplicity, these conjectures seem difficult to resolve.
Finally, we study policies that continue redialing until they succeed, balancing a
short mean wait against a small mean number of retries to success.

1 Introduction

Automatic redialing is a relatively recent telephone service; see for example [3] where
several products with automatic redialing are mentioned. Redialing services commonly
have two parameters: a maximum number n of retries and a length 7 of the time
interval during which retries are made. When an initial call fails, i.e., finds a busy
signal, redialing services typically make retries at evenly spaced intervals of length 7/n



until either the call succeeds or n retries have also failed. This paper proves that,
although 7/n-spacing is not always optimal, it is indeed optimal in certain basic models
of called-number behavior to be described in the following paragraphs. We also study
policies that continue redialing until they succeed, balancing a short mean wait against
a small mean number of retries to success.

Section 2 defines redialing policies and the mathematical models of telephone traffic
analyzed in the remainder of the paper. All models assume Poisson arrivals, but the
periods during which lines are busy are allowed to be constant or to have an exponential
distribution. Constant busy periods of length T' provide an interesting contrast to the
highly variable exponential busy periods. A constant call duration models services giving
recorded announcements such as weather reports, sports scores, movie schedules, etc.

The first two models that we analyze assume a single line/trunk and constant or
exponential call durations; the third continues with exponential call durations, but as-
sumes the Erlang loss model with ¢ > 1 trunks. (The case ¢ = 1 of the Erlang model is
brought out separately because it leads to much simpler results.) The Erlang loss model
describes situations where calls are placed through an exchange with ¢ > 1 trunks, and
failure to complete a call occurs only when all trunks are in use.

Our models apply exactly to a single redialer competing with ordinary customers,
who simply leave if their initial dialing attempt fails. However, the models should be
reasonable when only a small fraction of the customers are redialers. Problems with
many competing redialers are much more difficult. Note also that we do not model
directly dialing attempts that succeed in ringing the called party but fail because there
1S no answer.

Section 3 contains our main results on the optimality of the 7 /n-spacing policy. Prob-
abilities of success given in Section 4 for the 7/n-spacing policy have simple expressions
only for a single trunk and either exponential holding times or constant holding times
with 7 < T'. Section 4 also supplies approximations for the probability of success in
the Erlang loss model and calculates probabilities of success for the model with constant
busy periods when n = 1, and for the model with n arbitrary, 7 = nT', and the T-spacing
policy. The last two results lead to interesting conjectures about the optimal choice of
7 = T when n = 1 and about the optimality of the T-spacing policy when 7 = nT.
These conjectures look simple but apparently do not have a simple proof.

Section 5 shows that a policy with uneven spacing is appropriate when the arrival
rate is very small, as may be the case for a local call to a number without much traffic.
For the Erlang loss model, we study a random policy that significantly simplifies the
success-probability calculation. A fixed number of retrials may be unacceptable to some
dialers because failure may occur on all n trials. This motivates Section 6, where we
study policies that continue redialing automatically until eventual success.

2 Models and policies

We assume that calls arrive in a Poisson stream at mean rate a. Calls have independent
holding times with a common distribution and mean 7. The form of the distribution
will depend on the application. A convenient dimensionless parameter will be the traffic



intensity
p=aTl.

In the simplest application, dialing attempts fail because called numbers are them-
selves busy. Busy periods then represent typical phone calls. In the exponential model,
we assume a single trunk and take the holding time distribution to be exponential with
mean T.

We also consider the constant model with a single trunk and holding times of con-
stant duration T', to contrast the high-variance exponential periods with periods of zero
variance. With constant busy periods, the call that blocked the initial try at time 0 is
sure to end before time T', which suggests that a good strategy might deliberately make
all retries before time T, trying to succeed before any competing calls. This strategy is
analyzed in the next section.

In other applications, busy periods are apt to be periods when a switching system
has all trunks busy. Suppose callers dial through a switch with ¢ trunks and that dialing
failures occur only when all trunks are busy. With Poisson arrivals again, and with
exponential holding times, the switch is modeled as Erlang’s loss system (Riordan [9]).
The Erlang model is a Markov chain of birth-death type with ¢ + 1 states representing
the numbers 0,1, ..., or ¢ of busy trunks. A dialing attempt fails only if the state is c.
State k has transition rates P(k — k4 1) = a and P(k — k — 1) = k/T (except that

transitions ¢ — ¢+ 1 and 0 — —1 do not occur). The stationary state probabilities

Zogigc p'/i! 7
increase with k£ if p > ¢, and peak at £k = pif p < ¢. We are most interested in cases with
p near ¢ or larger so that calls have a high probability of being blocked. Although the
exponential model is a particular case of the Erlang model with ¢ = 1, it is instructive
to study the exponential model separately because of its simplicity.

In general, an initial calling attempt that fails occurs at a random time ¢ during a
busy period. A redialing policy specifies n waiting times X7 < ... < X,, < 7. The j-th

Pk

retry is then made at time 4o + X;, y =1,...,n, if retries 1,...,5 — 1 all fail. A basic
problem studied in this paper is: Given n and 7, find an optimal policy, i.e., one that
maximizes the probability P(n,7) that one of the retries succeeds.

A policy with retries spaced a constant time x apart, i.e., with X, = kx for k£ =
1,...,n, will be called the z-spacing policy. Of course, x < 7/n is required but the
oo-spacing policy has some interest when large spacings = are acceptable. For any
busy-period distribution with mean T, widely spaced retries fail independently with
probability p/(1 + p); then the co-spacing policy succeeds with probability

P(n)=1- (ﬁ)n. (2)

3 Optimality of 7/n-spacing

Convexity arguments feature in the proof of the following theorem, the main result of
this section.



Theorem 1. The 7/n-spacing policy is optimal in the exponential and the Erlang
loss models. It is also optimal in the constant model if T < T.

Proof. Define
G/(z) := P{line is busy at time z|line was busy at time 0}.

Consider any policy with X7 = 2y and X}, = Xy_1 + 2%, £ =1,...,n. Suppose a dialing
attempt at time 0 fails and let Q(«x1,...,2,) denote the conditional probability that
retries at times Xy,..., X, all fail.

The exponential and Erlang models will be covered first. In these models, whenever
a redial fails, the state of the model is known to be ¢. The conditional probability of
failing again, by redialing after waiting time x, is then G(x). It follows that

Q(r1y. .. xn) = G(x1) - G(ap). (3)

Exponential model. Recall that busy periods have exponentially distributed dura-
tions with mean 7" and that calls arrive at rate a. The line is busy at time x + dz if
either (i) it is busy at = and there is no hang-up in [z, 2 + dx] or (ii) it is idle at = and
there is a new arrival in [z, 2 + dz]. This observation leads routinely to the differential

equation
dd 1
I —T[(P +1)G +1].
The solution with G(0) =1 is
p _|_ e—(l-l—p)l’/T
Glz)= ———— (4)

14+p

Since log G/(x) is convex,

n

log Q(x1,...,2,) = anlog G(xg) > nlog G(Z zr/n).

For a given value of X, = 371 <, vx = 7, the policy succeeds with probability
Pn,7)=1-=Q(x1,...,2,) <1 —=G"(7/n). (5)

The optimal policy then takes x; = 7/n and achieves its upper bound in (5), which
completes the proof for the exponential model.

Erlang loss model. In this model, an arbitrary policy fails with a probability Q (x4, ..., z,)
of the same form as in (3), where now G/(x) is the probability, starting from state ¢, of
being in state ¢ again after time x. Derivations of G(x) appear in Riordan [9, p. 85] and
Benes [1, p. 208] (where G(x) is called the recovery function). To calculate G(x) one
must first find the zeros of

Ris)= ¥ (5“)("_—_;), (6)

0<j<e \J ¢



a polynomial in s. The zeros s; of R(s) are all real and negative. In terms of the s;,
G/(x) is computed from

G(x)zL/d—iesﬂ/TH(l‘ : ) (7)

k
Zogkgc/’ / k! =1 Si  i#j S; — 8

The function G(x) is convex because the exponentially decaying terms of (7) have
positive coefficients, a fact proved by Haantjes [4] and Ledermann and Reuter [7]. But,
we need log G(x) to be convex in order to prove the optimality result for 7/n-spacing
and hence to prove that the success probability is

P(n,7)=1-=G"(7/n). (8)

To prove convexity of log G(z), and hence (8), write (7) as

c
_y oo
- i

1=0

with coefficients C; and exponent factors r; both known to be non-negative. Differentiate
log G/(z) twice and get (GG” — (G')?*)/G*. Convexity of log G(z) will follow if GG" —
(G")? >0, i.e.,if

Z(T? — TZ'T]‘)CZ'C]‘G_(Ti-I_TJ)w > 0.

ij
In this sum, the ¢+ 1 terms with ¢ = j all vanish. The remaining terms can be combined
in pairs having the same exponential factor. Thus, the terms with (7,j) = (a,b) and
(7,7) = (b,a) combine into

(r2 +r; — 2r,m)C, Chyelath)e "= (ry —1)2C, Cye (@t >,

Then GG" — (G')* > 0, log G(z) is indeed convex, (8) follows, and we have completed
the proof for the Erlang loss model.

Constant model. In this model, a policy with 7 < T can fail in only n + 1 mutually
exclusive ways. One way, with probability 1 — 7/T', is that the original call lasts longer
than time X,, = 7. The k-th of the remaining n ways to fail requires the original call
to end between times Xj;_; and X}, say at time Xz_y + 1, 0 < ¢ < xp, and for a new
call to arrive between times X;_; + ¢ and Xj. Here, we assume that the original call
arrived during steady state, so the hang-up time X;_; + ¢ is uniformly distributed with
probability density 1/7T. Given t, the k-th failure occurs with conditional probability
1 — e~ ==Y An integral over 0 < ¢ < x;, removes the conditioning on ¢ and gives

axry + e "k — 1

q(xx) = (9)
14
for the probability of a k-th failure. Then failure occurs with probability
Q(xlv"'vxn) ZQ(xl)—l_"'—l_Q(xn)—l_l_T/Tv (10)
where 3 cpc, 2r = X, = 7. Since ¢"(z) > 0, a convexity argument shows that the
choice z; = 7/n is optimal. This completes the proof of the theorem. a

5



4 Probabilities of success

Probabilities of success for the 7/n-spacing policy have simple expressions only for the
exponential model and for the model with constant busy periods when 7 < T'. In the
exponential case, the success probability is, by (4) and (5),

p _|_ e_(1+p)7/(nT) n
1+p '

P(n,7)=1- ( (11)

Note that P(n,7) in (11) is an increasing function of 7. Since P(n, ) approaches P(n)

in (2) for large 7, the oo-spacing policy would be optimal if long waits between redials
were allowed. Comparing (2) and (11), one sees that little is gained by taking

/n>> [T/(1+ p)]lnp.

By (9) and (10), the optimal policy in the constant model with 7 < T has success
probability
P(r,n) = 1-=Q(r,...,7)
_ 1 — —at/n 12
_ l—nq<7—)—a7— n( e ) (12)
r p

Note that P(7,n) is again an increasing function of 7; 7 = T is a best choice if any 7 in
0 <7 <T is allowed.

For the Erlang loss model, we illustrate in Figure 1 a family of curves of G(x) vs

z/T for ¢ = 20 trunks and p = 2,16,30. As = becomes large, these curves flatten out

n

to approach asymptotes that represent the stationary probability p. of (1), the familiar
Erlang loss function. As can be seen, the curves verify the convexity of G(z).

&(x)
1

0. 8¢
0.6¢

0. 4;

0.2}

x/' T

Figure 1: The probability G/(x) for the Erlang model with ¢ = 20. The curves are labeled
with values of p.



In the remainder of this section, we first approximate the probability of success for
the Erlang loss model. We then calculate probabilities of success for the constant model
when n = 1, and when n is arbitrary, 7 = nT and T-spacing is used. The last two
results lead to interesting conjectures.

4.1 Erlang loss model

Applications with large ¢ are made difficult by the problem of finding the ¢ roots of
R(s) in (6). The authors’ version of MAPLED was limited to ¢ < 27. However, David
Applegate has shown that Miiller’s method (see e.g. Conte and DeBoor [2]) applied to
R(s) gives the roots with ¢ as high as 100.
For very rough calculations, the simple bound
- /T
. + ce—(pFo)z/

Gy < 5

(13)

can be useful as a conservative approximation. With G._i(x) defined to be the con-
ditional probability of state ¢ — 1 at time x given that the state at time 0 was ¢, the
inequality G.—1 () + G(z) <1 applied to the transition equation at state ¢,

dG ()
dx

= —TG(J?) + alle_y(2),

can supply an easy proof of (13). Aslong as x is so small that the number of busy trunks
is still highly likely to be ¢ — 1 or ¢, (13) gives a reasonably accurate approximation to
G/(x). But eventually the bound becomes asymptotic to p/(p + ¢) instead of to the true
loss probability p. from (1). Similar approximations, with & exponential terms, could
be obtained by working with the transition equations for states c,e —1,...,c— k + 1.
For further approximations, see Kosten [6].

By exploiting the special properties of the roots of R(s), it might be possible to
extend the calculations of G/(x) well beyond ¢ = 100. For very large ¢, the asymptotic
techniques of Mitra and Weiss [8] and Knessl [5] can also be recommended.

One of the asymptotic approximations introduced in [8] is as follows. FExcept when
x is large, the most likely paths of the Erlang loss model from state ¢ to state ¢ in
time x involve only a few transitions. Then the intermediate states & are all near c.
At these states the transition rate P(k — k — 1) = k/T may be approximated by ¢/T.
With that approximation, and with states relabeled by the number j = ¢ — k of idle
servers, the Erlang loss model is transformed into an M/M/1 queue with a buffer of
size ¢ — 1. Arrivals (of idle servers) to the queue represent departures in the Erlang loss
model and departures (ends of idleness) from the queue represent customer arrivals in
the Erlang loss model. The transition rates for the queue are P(j — j + 1) = ¢/T and
P(j — j—1)=a, except that 0 — —1 and ¢ — ¢+ 1 have probability 0. G(x) becomes
the probability that the queue is empty at time z, given that it was empty at time 0.
With ¢ large enough so that the queue’s buffer is unlikely to be nearly full during time z,
a further reasonable approximation replaces the finite buffer by one of infinite capacity.
The probability that an M/M/1 queue in state 0 returns to state 0 in a time z is a



standard result (see Riordan [9, p. 45, eq. (8)] ). In our notation (Riordan’s use of p
and a is different), it is

G(x) = e Iy(2y/pe/T) +/p/ch(2y/pe/T)

(1= efp) 3 (/e 12/ T) (1
k=2
where I;(2) is the Bessel function of imaginary argument (—i)*.Jy(iz). The approximate
G/(x) in (14) is often quite accurate. Thus, with p = ¢ = 20, (14) is accurate to 1% for
0 < z/T < .08, i.e., for G(x) > .43. Since the approximations used to derive (14) all
increased the probabilities of transitions towards states with more servers idle, (14) is
probably a lower bound on G(x).

4.2 Constant busy periods, n =1

In the exponential model, the probability of success increased with 7 = X, until, for
large 7, the probability in (2) was obtained. That is no longer true with constant-length
busy periods, as is made clear below just from the case n = 1.

Let o be the residual lifetime of the call at time 0; p is uniformly distributed on
(0, 7). Before time 7, when the single retry is made, the called line can have some
number k (0 < k < 7/T) of other calls. The retry succeeds, for a given k, if and only if
these k calls arrived and were served before time 7. Since the service time of £ calls is
kT, for a given value of p = r, 0 < r < min{T, 7 — kT}, these k calls must arrive during
the interval 7 —r — kT', an event having the Poisson probability distribution with mean
a(t —r — kT). The probability that the retry succeeds is then o<, 7| Pr, where

r.

min{7,7=kT} [q(7 — 1 — kT)]k —a(r—r—kT)
Py = /0 KT ‘ !

Integrations by parts yield
pPr = Hy(amax{r — (k+ 1)T,0}) — Hy(a(T — kT)), (15)

where

Hy(t) = e U4t 4+ £2/20 4+ - + 17 /K1), (16)
The terms Py depend on 7 in a way that changes its analytic form at 7 = (k + 1)7.
With £ = 0 for example,

1 —e™@7 T <T,
pPO - { e—a(T—T) _ ,—art (17)

Moreover, the number of terms P in the success probability depends on 7. As a
result, the success probability depends on 7 in a complicated way (see Figure 2 with
p=2). At 7 = T the term Py, which is always present, has a maximum exceeding
1/(1 4 p) by as much as 30% (depending on p). Then, with n = 1, the choice 7 = T
always improves on (2). Curves like Figure 2 for other values of p lead to the following

Conjecture 1. In the model with constant busy periods and n = 1, a best choice of
TisT="T.
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Figure 2: Probability P of success vs. u = 7/T for one retry and p = 2.

4.3 Constant busy periods, T-spacing

The T-spacing policy, with X = kT, is allowed if 7 can be as large as nT. Calculations
below show that this policy is better than either T'/n-spacing or oo-spacing; it may be
optimal for 7 = nT', but that is not proved. Since calls all last for time T, the T-spacing
policy fails only when, for & = 1,...,n, the retry at X}, is blocked by a call that arrived
in ((k—1)T,kT). The conditions that make T-spacing fail will be given in terms of
the residual lifetime p of the call at time 0 and the idle time y;, between the end of the
(k—1)-st call and the start of the k-th call after time 0. When the policy fails, the retry
at time kT was blocked by a call that started at time Yy, =o+y1+---+yp +(k—1)T
and ended at time Y, + T, where Y, < X, = kT <Y, + T. All n retries fail if

o+y1t+ys+-- < T (18)

for k = 1,...,n. Since r and the y; are all positive, all n inequalities (18) hold if (18)
just holds at & = n.

In (18), o is uniformly distributed on (0,7") and y; is exponential with mean 1/a.
For a given o = r, and k = n, the y1, ..., y, satisfy (18) with probability

" o7 = 1))
_ BT T pa(T=r)
1 ; f € .
The policy’s failure probability is obtained by averaging over r. The probability of
success becomes



with H;(t) as in (16). Terms of the sum can be combined to give the simpler result

(19)

Table 1: Probabilities of success for three x-spacing policies

p ax=T/n a=T T =00
0.1 0951626  0.951626  0.909091
0.3 0.863939  0.863939  0.769231
1 0.632121  0.632121 0.5

3 0.316738  0.316738  0.25

10 0.0999955 0.0999955 0.0909091
0.1 0.975412  0.998414  0.991736
0.3 0.928613  0.98706 0.946746
1 0.786939  0.896362  0.75

3 0.517913  0.583688  0.4375
10 0.198652  0.199946  0.173554
0.1 0.987604  0.999999  0.999932
0.3 0.96342 0.999945  0.997164
1 0.884797  0.995651  0.9375

3 0.703511  0.893548  0.683594
10 0.367166  0.398635  0.316987
0.1 0992891 1 1

0.3 0.978874 1 0.999965
1 0.931855  0.999989  0.999023
3 0.813309  0.994269  0.866516
10 0.532244  0.675987  0.486842

B N N B B I ] ISR NI NG NG NG il Bt

10 0.1 0.995017 1 1
10 0.3 0.985149 1 1
10 1 0.951626 1 0.999023

10 3 0.863939  0.999872  0.943686
10 10 0.632121  0.87489 0.614457

Table 1 compares probabilities of success (12) and (19) against (2); the first two
policies use even-spacing parameters © = T'/n,7 =T and x = T, 7 = nT. For fixed n,
the table shows that T-spacing is better than either T'/n-spacing or oo-spacing, especially
when n and p are large. The results suggest the following

Conjecture 2. In the model with constant busy periods and 7 = nT, the T-spacing
policy is optimal.

It is also interesting to see that Table 1 shows neither x = T'/n nor # = oo to be
always better than the other.

10



5 Uneven-spacing policies with a fixed number of
retries

This section shows that a policy using uneven spacing is appropriate when a is very
small, as may be the case for a local call to a number without much traffic. Competition
with other dialers is then not an important problem. If the dialer is willing to wait
a time 7, a single retry at that time will come close to maximizing the probability of
success. However, other trials before time 7 might place the call with a shorter wait.

We also study a random policy that significantly simplifies calculation of probability
of success for the Erlang loss model

5.1 No new arrivals

Suppose a = 0 and the dialer uses a policy of n retries, the last at time X,, = 7. Any
such strategy succeeds with probability 1 — G/(7). Since a = 0, only a call in progress at
time 0 can cause blocking. Then G/(x) becomes the probability that the call in progress
has a residual lifetime & or more. With that interpretation, what follows applies even
to the constant model; (3) is not used in this subsection.

In cases when the called number becomes free before time 7, the dialer now wants
to succeed in the shortest mean time. The conditional probability of success at trial k,
given a hang-up before time 7, is

G(Xp-1) — G(Xy)
1 —G(r)

and the policy must minimize the conditional mean

G(Xi|r) = (20)

k=1

Minimizing conditions are obtained by setting derivatives with respect to X} equal to
zero. The result is a recurrence

[Xk-l—l — Xk]G/(Xk) == G(Xk) — G(Xk_l), k= 1, e, — 1. (21)

For the exponential model and « =0, G(z) = e~ and . = X — Xg_q. Then (21)
becomes . i
For given 7 and n, the policy with smallest mean is found from (22). Starting with
any trial value for xy, (22) determines xs,...,2,. The initial 21 must be adjusted to
make z, = 7. In a typical example, a dialer making n = 4 retries in time 7 = 3T
should dial at times .4567, 1.0337, 1.815T, and 3T to succeed in mean time 1.2047'.
Although the best policy requires most of the retries to be made early, it doesn’t improve
much on 7/n spacing unless 7/T is large. In the example with 7/T = 3 and n = 4,
uniform spacing gives success in mean time 1.2647T. With larger values of n, any policy
with reasonably closely distributed retry times will succeed almost immediately after

11



hangup. The conditional mean time to hangup when 7 = 3T is .84287T"; the policy with
n = 4 could be improved by increasing n.

With @ = 0, models with more than one trunk have less interest. But one can adapt
the above discussion to the Erlang model by noting that the first of ¢ blocking calls to
hang up has the same residual life as a single exponential call of mean duration T'/c.

In the model with constant call durations, the residual-life distribution is

Glz)=1—2/T, 0 <z <T.

With 7 < T (the only reasonable condition), (21) now leads to the policy X = kr/n
instead of (22); the conditional mean wait is (1 4+ 1/n)7/2.

5.2 Random policy for the Erlang loss model

Instead of waiting a fixed interval between redials, a dialer might pick intervals =1, x5, ...
as 1..d. choices of a random variable z. Indeed, random dialing may be better than
perfectly regular dialing as a model of human behavior. Each retrial will now fail with
probability ¢ = F(G(x)). Since the x in (3) are independent, the random policy will
succeed in n or fewer trials with probability P(n) =1 — ¢". If E(x) =y, then

9= E(G(2)) = G(E(x)) = G(y) (23)

follows from the convexity of G(x) in (7). For a fixed mean y, no random policy does
better than the y-spacing policy. A random dialer continuing until the call is placed uses
a mean number F(N) = 1/(1—g) of retries; they require a mean time E(W) = y/(1—g).
Suppose x has the exponential distribution, so that

g=gly) = [ Gy = L vIGH) SEBER THEE b X
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Figure 3: The success probability P vs. the traffic intensity p for the even and random
(exponential) spacing policies with 7/T = 2; the upper curve of each pair corresponds
to the even spacing policy. In the limit n — oo, the two policies give the result labeled
“continuous redialing” in the figure.

6 Certain success

Fixed numbers of retrials may be unacceptable to some dialers because failure may occur
on all n trials. In this section we study policies requiring an automatic dialer to redial
until it eventually succeeds.

6.1 Exponential and Erlang loss models

Assume that retries are made at times x, 2z,... until a successful trial is made. The
number of retries actually used is a random variable v. Again, each redial has probability
G(x) of failing. The dialer succeeds at trial n with probability [1 — G(z)]G" () so the

expected number of trials is

B 1
1 —G(x)

The dialer’s mean wait to success is F(W) = xFE(v). Now the choice of 2 involves a
compromise. Small z is needed for a short mean wait but large = is needed for a small

E(v)

mean number of redials (see Table 2).

The following criterion determines an interesting special value of = for the exponen-
tial model. Suppose that, when trials at Xi,..., X;_1 have failed, the next trial must
maximize the probability of being the first call after the hang-up of the one in progress
at time Xj,_1. The choice of z = X, — X};,_; must maximize
—o/T _ —ax

/l’ e-t/T_a(x_t)ﬂ _ ¢ €
0

F= o1 (26)
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Table 2: Choosing « for the exponential model

p__=/T E) EW)/T
0.2 0.2 5.62398 1.1248
0.2 0.5 2.65964 1.32982
0.2 1 1.71722 1.71722
0.2 2 1.31972  2.63945
0.2 10 1.20001 12.0001

1 0.2 6.06649 1.2133
1 0.5  3.16395 1.58198
1 1 2.31304  2.31304
1 2 2.03731 4.07463
1 10 2 20

3 0.2 8.58608 1.71722
3 0.5  6.31437 3.15719
b} 1 6.01491 6.01491
3 2 6.00004 12.0001
3 10 6 60

25 0.2 26.1442  5.22885
25 0.5 26.0001 13

25 1 26 26

25 2 26 52

25 10 26 260

The maximum lies at /T = In(p)/(p — 1). Table 3 shows how this policy performs as
a function of p.

Again, for the Erlang loss model, the dialer chooses x to balance E(v) against F(W).
If x is large, then F(v) is close to 1/(1 — p.), with p. the loss probability (see (1) with
k =¢), but E(W) is large. If a is small, then F(W) is near T'/¢, the mean wait for the
first of ¢ calls to end, but E(v) is large. The dialer might now choose = to maximize
the probability that in time = () one of the ¢ calls ends and (i7) no new calls arrive
afterward. Then a function like (26) (with T replaced by T'/¢) would be maximized; the

choice would be
x=(T/c)In(p/c)/(p/c—1), (27)

and would be convenient because neither GG(z) nor the roots s; are needed in (27).

6.2 No new arrivals

As before, the dialer might want a policy that is certain to succeed eventually. Suppose
each retry is assumed to have a cost of b time units so that the cost to the dialer of
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Table 3: Certain success policy with a special x

p__ /T Ev)  EW)/T
0.05 3.1534 1.08975  3.43642
0.1  2.55843  1.17015 2.99374
0.2  2.0118 1.31787 2.6513
0.5  1.38629  1.71429 2.3765
0.75 1.15073  2.01958 2.32399
1 1 2.31304  2.31304
1.25 0.892574 2.59881 2.31963
1.5 0.81093  2.87915 2.33479
2 0.693147  3.42857 2.3765
3 0.402359 6.58937 2.6513
10 0.255843 11.7015 2.99374
25 0.13412  26.8204 3.59715

success at trial k is Xy + bk. The X} are to be chosen to minimize the expected cost

€ = 0% + BI[G(Xir) — GOX)L (25)

k=1

(Note that k& now runs from 1 to oc.) A minimizing condition like (21) is

(Xps1 — Xi + DG (X)) = G(X}) — G( Xy ), (29)
or b
“”LTJF — /T (30)

for an exponential busy period. If the retry at X fails, the call still has the same residual
life distribution it had at time 0 and so the minimizing policy must have z; = x5. That
condition and (30) determine that all x; are equal. The minimum C' becomes

C:T—|—$1—|—b,

which is a low cost, considering that T is the mean cost of waiting for the call to end
and b is the cost of one retry.
For a constant busy period, the minimizing condition (29) becomes

Xpy1 —2X5p + X4t +06=0
with the solution
Xe =kXy — k(k—1)b/2. (31)

In (31), the X}, will eventually decrease and so the policy will have to choose X7 and a
finite value of n such that X7 < X3 < --- < X,, = T. For a given n, X,, = T requires
X1 =T/n+ (n—1)b/2, so

n(n—1)<2T/b
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is needed to make X,,_; < X,,. In this way, the solution reduces to trying about /27'/b

values of n to see which gives the smallest C' in (28). Unlike (22), equation (31) now
clusters the X} near T instead of spreading them evenly.

6.3 Constant busy periods, first call

As in Section 6.1, suppose a dialer always chooses Xj so that, given the failures at
Xi,..., X_1, his next call has maximum probability both of succeeding and of arriving
before anyone else places a new call. The dialer’s best policy is a T-spacing policy. A
proof of this fact can easily be given assuming that Conjecture 1 in Section 4.2 is true.
The argument that follows shows only the main idea.

By Conjecture 1, xy = T'. To use an induction argument, suppose x1 = x5 = -+ =
xr =T and the first k retrials all fail. As in Section 4.3, the residual lifetime p and the
idle times y; between calls satisfy (18). The call that blocked the trial at X} has residual
lifetime

Yi+T —-kT=04+y1 +ys+ ... + yp > o,

which is even longer than the original residual lifetime of the call at 0. Since the best
policy for a single retry waiting for a residual lifetime p to end took zy = T', the policy
to wait for an even longer lifetime should not take z;,y < T. But, no lifetime exceeds
T; a policy has nothing to gain by taking xz41 > T'. That leaves only xp1y = T.
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