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1 Abstract

The average case analysis of algorithms usually assumes independent, identical
distributions for the inputs. In [?], Kenyon introduced the random-order ratio, a
new average case performance metric for bin packing heuristics, and gave upper
and lower bounds for it for he Best Fit heuristics. We introduce an alternative
definition of the random-order ratio and show that the two definitions give the
same result for Next Fit. We also show that the random-order ratio of Next Fit
equals to its asymptotic worst case, i.e., it is 2.

2 Introduction

An instance of the classical bin packing problem consists of a positive real C
and a list L = (a1, a2, ..., an) of items with sizes 0 < s(ai) ≤ C, 1 ≤ i ≤ n; a
solution to the problem is a partition of L into a minimum number of blocks,
called bins, such that the sum of the sizes of the items in each bin is at most
the capacity C. The capacity is just a scaling parameter; as is customary, we
put C = 1, and restrict item sizes to the unit interval.

Research on the bin packing problem started over 30 years ago [?], [?]. As
the problem is NP-complete [?], many approximation algorithms have been
proposed and analyzed. Next Fit (NF) is arguably the most elementary, as it
packs items bin by bin, not starting a new bin until an item is encountered that
does not fit into the current, open bin; in this event the open bin is closed, the
new bin becomes the open bin, and no further attempt is made to pack items
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in the bin just closed. A natural generalization of NF is the First Fit algorithm
(FF), which never closes bins; it packs each successive item from L in the first
(lowest indexed) bin which has enough space for it. Another improvement on
NF is the Best Fit algorithm (BF), which packs the next item into the bin which
can accommodate it with the smallest capacity left over (with ties resolved in
favor of the lower indexed bin).

The most common ways of appraising an approximation algorithm are per-
formance ratios, which give the performance of an approximation algorithm
relative to an optimal algorithm. We use the term competitive ratio for online
algorithms and approximation ratio for offline algorithms. Informally, asymp-
totic bounds for algorithm A typically take the form: For given constants
α ≥ 1, β ≥ 0, A(L) ≤ αOPT (L) + β holds for all lists L; the bound α is
called an asymptotic worst-case ratio, or performance guarantee. If β = 0 is a
constraint, then the corresponding α is said to be absolute rather than asymp-
totic.

In probabilistic, or average-case, analysis the item sizes are usually assumed
to be independent, identically distributed random variables. For a given al-
gorithm A, A(L) is a random variable, whose distribution is the object of the
analysis, along with the expected ratio E(A(L)/OPT (L)) or simply the expected
performance EA(L), usually in terms of EOPT (L). In most cases, computing
the distribution of A(L) presents a very difficult problem, so weaker results,
such as asymptotic expected values and perhaps higher moments are computed.

Kenyon [?] introduced a new performance metric for an online algorithm
A, which compares optimal performance with the performance of A when the
ordering of its input is randomized. Specifically, let π denote a permutation
of (1, . . . , n) and let Lπ denote L reordered by the permutation π of the item
indices. Then the Random-order performance of A on list L is defined as

RRA(L) =
EπA(Lπ)
OPT (L)

where, for given |L| = n, the expectation is taken over all n! equally likely
permutations π of the item indices. Let

RRA(n) = sup
(L:|L|=n)

RRA(L).

The asymptotic random-order ratio is then defined as

RRA := lim supn→∞RRA(n).

Again, one seeks bounds of the form EπA(Lπ) ≤ αOPT (L) + β for constants
α, β with α as small as possible. This new measure gives another perspective
on the pessimism of classical worst-case analysis.

Another random-order performance metric, which may be easier to analyze
in some cases, focuses on random orderings of lists that give largest performance
ratios. Formally, let σ = (L(1), L(2), . . .) denote a sequence of worst-case lists of
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n items under A, i.e., no list of n items produces a larger ratio A(L)/OPT (L)
than L(n) does. Define

RR∗A := lim sup
n→∞

RRA(L(n))

Clearly, RR∗A ≤ RRA. RR∗NF = 2 is proved in Section 3, but the evaluation of
RR∗BF remains an open problem.

By means of the following example for BF, Kenyon illustrates the dramatic
differences one can expect in performance as measured by random-order ratios.
For the list

L2n = (1/2− ε, ..., 1/2− ε︸ ︷︷ ︸
n

, 1/2 + ε, ..., 1/2 + ε︸ ︷︷ ︸
n

),

an optimal algorithm gives, by matching the smaller and larger items, the value
OPT (L2n) = n. FF and BF give for this list 3n/2−1 ≤ FF (L2n) = BF (L2n) ≤
3n/2, and hence an asymptotic ratio of 3/2, which is not much less than the
asymptotic worst-case ratio of 17/10.

In the random-order scenario, Kenyon approximates random permutations
of the input by taking each item independently to be 1/2 + ε or 1/2 − ε with
equal probability, i.e., by a sequence of Bernoulli trials. The resulting sequences
can be viewed as unbiased random walks where at each step we move one up
or down depending on whether the arriving item is larger or smaller than 1/2.
As is easily verified,1 the number of unpaired items is bounded by the vertical
span of the walk associated with the input sequence. The expected value of the
vertical span of an unbiased random walk is well known to be O(

√
n), and so

in the random-order scenario, Best Fit is asymptotically optimal for these near
worst-case examples, as the expected value of the optimum is O(n).

In fact, the same conclusion holds in the precise model where we consider
permutations of the list L2n. Then the corresponding walk will always return
to the origin. One can show that the expected vertical span of this random
walk is o(n). This can be obtained from the bound for the unbiased walk above
by using the chopping technique of Section 2.2. There we exploit the fact that
short segments of sufficiently long random permutations behave like Bernoulli
sequences.

Kenyon proves that the random-order ratio of BF satisfies

1.08 ≤ RRBF ≤ 1.5,

which clearly leaves considerable scope for improvement. Prospects are dimmed
by Kenyon’s observation that the exact result is thought to be near the lower
bound, but the upper bound is by far the more difficult one to prove and hence,
presumably, to tighten.

In this paper we will investigate the random-order performance of Next Fit.
It is known that 2 is both the absolute and asymptotic worst-case performance
of NF, and that the average case performance under the U(0, 1) distribution is

1This random-walk approach originated with Richard Karp.
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4/3 [?]. The next section first applies Kenyon’s initial approach to NF, which
is an approximate analysis of the random-order performance on lists that bring
out NF’s worst-case behavior. It is then verified that, in contrast to the corre-
sponding BF analysis, this estimate is in fact exact to within constants hidden
by our asymptotic notation. In summary, for these lists we get a ratio of 10/7.
Section 3 verifies that this analysis does not yield the random-order ratio for
NF; it shows that, in fact, RR∗NF = RRNF = 2, which is the same as the
combinatorial worst-case performance [?].

3 Next Fit

We start with an estimate of RR∗NF (L) for worst-case lists L. Section 2.2 then
shows that these random-order ratios are in fact exact.

3.1 Approximate random-order performance on worst-case
lists

The standard example giving asymptotic worst-case bounds for Next Fit is
defined by

L2n = (1/2, ε, ..., 1/2, ε︸ ︷︷ ︸
2n pairs

).

Here OPT (L2n) = n + 1 and NF (L2n) = 2n when ε < 1/(2n).
If we now take the approximate approach of Kenyon, then 4n items are

drawn independently, each taken to be 1/2 or ε with equal probability. Call the
1/2 items (i.e., the items with sizes 1/2) big items, and the ε items small items.
The NF packing process is described by the following Markov chain with just
four states:

a: The open bin is empty or it is full with two big items. The open bin is
empty only in the initial state.

b: There is just one item in the open bin and it is big.

c: There is at least one small item, but no big item in the open bin.

d: There is one big item and at least one small item in the open bin.

Transitions are shown in Figure ?? and each has probability 1/2. Note that,
if no more than 2n items are packed, addition of items of size ε can never start
a new open bin, since ε < 1/(2n). The chain is aperiodic and irreducible. The
stationary probabilities can be computed from the following equations, in which
px denotes the stationary probability of state x.
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Figure 1:
A Markov chain describing Next Fit packing of items, each with size ε or 1/2,
and with each size equally likely. Each transition has probability 1/2.

pa = pb/2
pb = pa/2 + pd/2
pc = pa/2 + pc/2
pd = pb/2 + pc/2 + pd/2

The unique probability distribution solving these equations is pa = pc =
1/7, pb = 2/7, pd = 3/7. NF starts a new open bin from state d with probability
1/2, and NF always starts a new open bin in transitions out of state a. Thus, for
large n, each item packed starts a new open bin with (asymptotic) probability
1 · 1

7 + 1
2 · 3

7 = 5
14 and since there are 4n items, ENF (L2n) ∼ 20n/14, n →∞.

Since EOPT (L2n) ∼ n, as n →∞, it follows that

lim
n→∞

ENF (L2n)
EOPT (L2n)

=
10
7

(1)

We note in passing that this is only slightly larger than 4/3, the average-case
performance of NF when item sizes are drawn independently from U(0, 1).

We mention that if we start with the list (1, ε, 1, ε, ..., 1, ε) studied in [?] we
will get a ratio of 4/3 from the same analysis.

3.2 Exact random-order performance on worst-case lists

The analysis below uses well-known monotonicity and subadditivity properties
that NF shares with OPT (see, e.g., [?], pages 30, 146). We omit the routine
proofs.
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Proposition 1. Let L = (a1, a2, ..., an) be an arbitrary list. Delete any
prefix (a1, a2, ...ak) satisfying the condition

∑k
i=1 ai ≤ 1 from the beginning of

the list, and let L∗ = (ak+1, ak+2, ..., an) be the new list. Then

NF (L)− 1 ≤ NF (L∗) ≤ NF (L).

¥

Proposition 2. Suppose L
′
and L

′′
are two arbitrary lists. Then

NF (L
′
) + NF (L

′′
)− 1 ≤ NF (L

′
L
′′
) ≤ NF (L

′
) + NF (L

′′
),

where L
′
L
′′

denotes the concatenation of L
′
and L

′′
.

¥

Let Ln denote a list having n big (i.e., 1/2) and n small (i.e., ε) items in
some order. We compute below the asymptotic performance of NF averaged
over all permutations of Ln. Let ξn be a permutation of Ln drawn uniformly
at random from the set Un of

(
2n
n

)
such permutations. Let ηn be a random

length-2n list containing only big and small items; ηn has a uniform distribution
on the set of 22n such lists. It is easy to see that ηn can be analyzed by
the unconstrained random-walk method. Indeed, we have already proved that
limn→∞ENF (ηn)/EOPT (Ln) = 10/7; we will now show the following

Theorem 3.

lim
n→∞

ENF (ξn)
EOPT (Ln)

=
10
7

.

Proof. Let L
′
n be a random sequence drawn uniformly from ξn. Let us

divide L
′
n into sublists each of length m, except possibly for the last sublist

which has length 2n mod m, where m is an integer to be defined later. Let us
denote the sublists by L

′
n,1, L

′
n,2, ...L

′

n,d 2n
m e−1

, L
′

n,d 2n
m e, so that

L
′
n,i = (a(i−1)·m+1, a(i−1)·m+2, ..., ai·m)

for 1 ≤ i ≤ ⌈
2n
m

⌉− 1 and

L
′

n,d 2n
m e = (a(d 2n

m e−1)·m+1, ..., a2n).

By repeated application of Proposition 2 we get

ENF (L
′
n,1) +ENF (L

′
n,2) + ... +ENF (L

′

n,d 2n
m e−1

)−
(

2n

m
− 1

)
≤ ENF (L

′
n) ≤

ENF (L
′
n,1) + ENF (L

′
n,2) + ... + ENF (L

′

n,d 2n
m e−1

) + m,

where we made use of
ENF (L

′

n,d 2n
m e) ≤ m.
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As NF (L
′
n,i), 1 ≤ i ≤ ⌈

2n
m

⌉− 1 are identically distributed random variables, we
have that
(⌈

2n

m

⌉
− 1

)
ENF (L

′
n,1)−

2n

m
+1 ≤ ENF (L

′
n) ≤

(⌈
2n

m

⌉
− 1

)
ENF (L

′
n,1)+m.

Now, if n → ∞ and m is chosen in such a way that m → ∞ and n/m → ∞
then m/n → 0 and so m = o(n). We get

ENF (L
′
n) =

2n

m
ENF (L

′
n,1) + o(n).

So it is sufficient just to prove that

lim
n→∞

ENF (L
′
n,1)

EOPT (L′n,1)
=

10
7

. (2)

To this end, we show that for any L
′
n,1

e
− 1

n1/4 ≤ P (L′n,1 = s)2m ≤ e
1

n1/4 , (3)

where P (L
′
n,1 = s) is the probability that L

′
n,1 contains s large items and (m−s)

small items.
This means that the differences between the probabilities of a list from ηn

(which is 1/2m) and from L
′
n,1 can be made really arbitrarily small, indepen-

dently of s. Formally, this suffices because NF (L′n,1) and NF (ηm) are both
nonnegative, and therefore

e
− 1

n1/4 ≤ ENF (L′n,1)
ENF (ηm)

≤ e
1

n1/4 ,

and likewise

e
− 1

n1/4 ≤ EOPT (L′n,1)
EOPT (ηm)

≤ e
1

n1/4 ,

so (??) follows from (??).
We turn now to the proof of (??). Let S be a sequence drawn from Un; it

contains precisely n large and n small items. Suppose further, that L
′
n,1 consists

of s large and m− s small items. Then the probability of this prefix is

pn,s =

(
2n−m
n−s

)
(
2n
n

)

for 0 ≤ s ≤ m.
Assume now that m = bn1/4c. Then clearly m → ∞ and n/m → ∞ as

n →∞.
Let pn and Pn be the minimal and maximal values of pn,0, . . . , pn,m, respec-

tively. We have 2m possible (short) sequences L
′
n,1, hence

pn ≤ 1
2m

≤ Pn. (4)
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From the monotonicity properties of binomial coefficients, we see that pn = pn,0

and Pn = pn,k with k = bm/2c. We have

1 ≤ Pn

pn
=

(
2n−m
n−k

)
(
2n−m

n

) =
n!(n−m)!

(n− k)!(n−m + k)!
=

=
n(n− 1) · · · (n− k + 1)

(n−m + k)(n−m + k − 1) · · · (n−m + 1)
≤ nk

(n−m + 1)k
=

=
(

1 +
m− 1

n−m + 1

)k

.

For sufficiently large n we have n/2 < n−m + 1 and 2m ≤ n1/2, hence

(
1 +

m− 1
n−m + 1

)k

<

(
1 +

2m

n

)k

≤
(

1 +
1

n1/2

)k

≤
(

1 +
1

n1/2

)n1/4

=

=

((
1 +

1
n1/2

)n1/2)n−1/4

< e
1

n1/4 → 1,

as n →∞.
This together with (??) gives that

e
− 1

n1/4 ≤ pn,s2m ≤ e
1

n1/4 ,

which is exactly inequality (??), and hence completes the argument.

¥

4 Random-order performance of NF

Theorem 4.
RRNF = RR∗NF = 2.

Proof. It is clear that RRNF ≤ 2 since for any list L, NF (L) < 2 ·OPT (L).
Next, let us define

L2n,k = (1/2, ε/k, ..., ε/k︸ ︷︷ ︸
k

, ..., 1/2, ε/k, ..., ε/k︸ ︷︷ ︸
k︸ ︷︷ ︸

2n

).

Thus, L2n,k consists of 2n(k + 1) items; out of these 2n are large and 2nk
are small. Here n is an arbitrarily fixed positive integer, and k will be selected
to be sufficiently large (compared to n). Now we have OPT (L2n,k) = n + 1
when ε is small enough. For the random order performance we have to compute
the average number of bins over all permutations, i.e., over Pn :=

(
2nk+2n

2n

)
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permutations. For any permutation we will use at least the optimal number of
bins, namely n+1 bins. On the other hand, we can characterize a subset of those
permutations where we will use exactly 2n bins: these are those permutations
where we do not have consecutive 1/2 items. We will show that almost all
permutations are of this type.

In fact, consider the orderings of the input L2n,k which have the following
pattern:

s . . . sls . . . sls . . . sls . . . s,

where s . . . s stands for a nonempty block of small items. The number Sn of
these sequences is the same as the number of distributions of 2nk − 2n − 1
indistinguishable balls into 2n + 1 distinct boxes. The latter number is easily
seen to be (

2nk − 1
2n

)
,

see for example Section 1.7 in [?] for a discussion, and related counting problems
(involving compositions and combinations with repetitions).

We have now

Sn

Pn
=

(
2nk−1

2n

)
(
2nk+2n

2n

) =
(2nk − 1)(2nk − 2) · · · (2nk − 2n)

(2nk + 2n)(2nk + 2n− 1) · · · (2nk + 1)
≥

≥
(

2nk − 2n

2nk + 2n

)2n

=
(

1− 2
k + 1

)2n

≥ 1− δ,

for any δ > 0 and any n, whenever k is sufficiently large. This means that
at almost all permutations we do not have consecutive 1/2 items and at these
permutations we will pack 2n bins by the Next Fit. This will ensure that the
average number of bins over all permutations can be made arbitrarily close to
2n.

¥

5 Open problems

It was shown here that for a worst case list of Next Fit the random-order perfor-
mance is asymptotically the same as the average case performance. Is this true
for all input lists? In more detail: let (b1, b2, ..., bm) denote the different sizes of
L = (a1, a2, ..., an) and let ci be the multiplicity of bi in L. Clearly

∑m
i=1 ci = n.

Let Lt be a list of t items, where the items are from the set {b1, . . . , bm} and
drawn independently with probabilities c1/n, . . . , cm/n. On the other hand let
Lk denote a concatenation of k copies of L. Is now

lim
t→∞

ENF (Lt) = lim
k→∞

EσNF (Lk
σ)

OPT (Lk)
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true for all lists? We suspect that the answer is yes. We do not know whether
the two performance measures are the same for the bin covering problem under
the Next Fit algorithm.

More interestingly, is this true for more advanced algorithms like First Fit
or Best Fit? This is well worth investigating.
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