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Abstract. We introduce a general mathematical model of processes by
which self-assembled objects are built from physical (e.g., molecular)
units and clusters of these units. We operate within the paradigm of
dynamical systems theory, thus representing the self assembly process
by a system of ODEs. Our primary interest is in yield, i.e., the fraction
of the absorbing state containing the desired product, and how it can
be controlled. We show that when reaction rates are varied, unexpected
phase transitions can occur where yields become 100%.

1 Introduction

Self assembly of physical systems brings order out of disorder; it can be described
as the basic bottom-up paradigm of numerous constructive and computational
processes that have applications spanning nanoscale electronics, biotechnology,
medicine, and sensor networks. The scale of the process varies, as do the ap-
plications, from the molecular to the astronomical; however, the work proposed
here focuses on self assembly at nano scale. Such processes grow complexes from
the distributed and autonomous interaction of vast numbers of particles sub-
ject to simple bonding rules. Particles are not controlled individually (hence the
term “self”), but in the aggregate, e.g., by changes in temperature or relative
concentrations of particle types in the initial state.

Research continues apace in molecular self assemblies [1–3] (e.g., polymer-
ization) by which novel functional materials are produced, and nanowire self
assembly for producing elementary nanodevices such as switches, gates, and
memory elements [4] which can be further assembled into nanocomputers. On
the computational side, self assembly plays a fundamental role in amorphous
computing [5] and DNA-based computing [6, 7].

The connections with computing remain exciting and promising areas of re-
search, both from the experimental and theoretical points of view. Note the two
orthogonal ways that self assembly has influenced research in computer science
and engineering: First, the process itself is a computation in DNA-based comput-
ing, and second, it is the (nano) fabrication of devices that do the computation.
Indeed, the efficiency and robustness of self assembly in these two applications
are critical to the success of the underlying concepts.

The dramatic advances in self assembly, and in nanoscience more gener-
ally, belong primarily to the experimental scientists; as in other applications,



mathematical modeling and the development of reference theories tend to fol-
low experimental proofs of concept. There have been a number of combinatorial
studies [6, 8], but self assembly typically involves random phenomena, and is
intrinsically a dynamic process, evolving in continuous time, which puts it in
striking contrast with classical technologies and computing paradigms. And al-
though insightful stochastic models and reference theories have been virtually
ubiquitous in the physical sciences, they remain a fertile ground for self assembly
research, where stochastic analysis has only scarcely begun. The early work of
Adleman and colleagues is the springboard in this area, and serves as our point
of departure.

In this paper, we study a general model of self assembly not tied to specific
applications (although we often adopt the “tile” terminology of DNA models
rather than alternatives such as particles). In particular, we study processes in
which self-assembled objects are built from physical units (e.g., monomers) and
clusters of these units.

We chose to work in the general paradigm of dynamical systems theory, as
it reflects, in our view, certain components lacking in available studies of self-
assembling systems, yet reflects crucial features of these systems. In particular,
we represent the dynamics of self assembly by a system of ordinary differential
equations resembling those describing the processes of chemical kinetics. This
reduction abstracts the problem of the underlying “physical content” yet allows
us to analyze the system quite precisely.

Again, following the standard methodology of bifurcation theory, we intro-
duce the reaction rates as parameters of the system. These reaction rates, one
for each distinct cluster pair, influence qualitative and quantitative behavior of
the resulting dynamical system, and we concentrate on this dependence. In par-
ticular, we are interested in the yield, i.e., the fraction of the absorbing state
that contains the desired product, or self-assembled objects. We show that when
reaction rates are varied, unexpected phase transitions can occur where yields
become 100%.

A need for high yields motivated our work in [9]: the analysis of a control
mechanism (modeling temperature variation for example) that implements re-

versible self-assembly, where disassembly of objects can be exploited to improve
the overall assembly process. We review these results here.

2 A baseline self assembly model

In the DNA-computing terms of [10] elementary particles called tiles combine
to form progressively larger geometric shapes, or complexes, called supertiles.
Hereafter, we say i-tile, i ≥ 1, when referring to a supertile containing i unit
tiles.

In the general tile-system model, there is a set of tile types and a collection
of bonding (sticking or gluing) rules governing how tiles and supertiles combine
into larger supertiles. In the model here, all elementary, unit tiles are subject to
the same bonding rules, or equivalently, the system is homogeneous with just



a single tile type. Supertiles of size i combine with supertiles of size j to form
supertiles of size i + j subject to a reaction rate (or sticking probability) of
pij ≥ 0. These rates, semantically, reflect the energetic reaction threshold (and
temperature) via the familiar formula

pij ≈ exp

(

−Uij

kT

)

,

where Uij is the energetic barrier for tiles of sizes i and j to combine. Notice
that we assume that once combined, the tiles are locked, i.e., the process is
irreversible.

The crucial assumptions about the system are the following:

– tiles of size N precipitate, where N is a given parameter of the tile system,
– no combination resulting in tiles heavier than N is allowed.

We assume ergodicity: the rate of collision of particles of the same type
i is proportional to x2

i , while the rate of collision of different types i and j is
proportional to 2xixj . Hence, the total rate of reaction

(i) + (j) → (i + j)

is the product of the rate of collisions of i- and j-tiles, and of pij .
Combining all possible interactions, we arrive at the following master sys-

tem of ODEs:

dx1

dt
= −2p1,1x

2
1 − 2p1,2x1x2 − . . . − 2p1,N−1x1xN−1

dx2

dt
= p1,1x

2
1 − 2p1,2x1x2 − 2p2,2x

2
2 . . .

...

dxN

dt
= 2p1,N−1x1xN−1 + 2p2,N−2x2xN−2 + . . .

Note that there is no intrinsic limitation to spatial linearity in this model.
Also, since we are exploring behavior in the fluid limit, our results also apply to
situations in which there are different tile types, as long as they have the same
initial concentrations and symmetric behavior. For example, suppose the final
supertiles are 3-tiles, there are 3 tile types, no two tiles of the same type can
appear in the same supertile, and the concentrations of the 3 tile types are equal
in the initial state.

3 N = ∞

As often happens, the case where the size of the precipitating supertile N is very
large can be analyzed explicitly, if one assumes all pij = 1.



Indeed, we have

dxl

dt
= −

∞
∑

i=1

2xlxi +
∑

m+n=l

xmxn.

Passing to the generating function f(z, t) =
∑∞

i=1
xi(t)z

i yields

∂f(z, t)

∂t
= −2f(z, t)f(1, t) + f(z, t)2.

Solving first for φ(t) = f(1, t) gives φ(t) = 1/(t + 1), whence

f(z, t) = (t + 1)2
∞
∑

k=0

(

t

t + 1

)k

f0(z)k,

where f0(z) = f(z, 0).
In particular, if f0(z) = z (which corresponds to the case of interest for us,

when all the tiles initially are of size 1), then at any time t, the generating
function f(z, t) describes a geometric distribution,

xk(t) = (t + 1)2
(

t

t + 1

)k

.

The profile of concentrations is geometric, spreading further and further as t
grows. One can easily adjust this method of solution to the situation where the
rate matrix (pij) is of rank 1, i.e. when

pij = pipj

for some sequence {pi}i≥1, pi ≥ 0.

4 Assembly of triangles

For N = 3 the master system is

dx1

dt
= −2p11x

2
1 − 2p12x1x2,

dx2

dt
= p11x

2
1 − 2p12x1x2.

(The special case with p11 = 1 and p12 = 1/2 was presented in our earlier
paper [9].) The trajectories of this system satisfy the following ODE (we use the
notation y := x2(x1), x := x1 for brevity):

dy

dx
=

y − (p/2)x

y + px
, y(1) = 0,

where p = p11/p12 is the sole parameter determining the limiting concentration
y(0) = x2(∞). Let z1, z2 be the two roots of

z2 + (p − 1)z + p/2 = 0

Computations give the following.



1. If p ≥ 2 +
√

3, then z1,2 are both real and negative, and

x2(∞) = (−z1)
1−z2

z2−z1 (−z2)
z1−1

z2−z1 ,

where

z1 =
1 − p −

√

p2 − 4p + 1

2

z2 =
1 − p +

√

p2 − 4p + 1

2
.

In particular, as p → ∞,

z1 ≈ p, z2 → 1/2,

and

x2(∞) ≈ 1/2 − ln p/p.

2. If 2 −
√

3 < p < 2 +
√

3, then

x2(∞) =

√

p

2
exp

(

p + 1
√

−p2 + 4p − 1

(

arccos
1 − p√

2p
− π

)

)

.

3. The most interesting behavior occurs when p = 2−
√

3, for if 0 ≤ p ≤ 2−
√

3,
then x2(t) → 0 as t → ∞. In fact, x2(t)/x1(t) → z2, where

z2 =
(1 − p +

√

p2 − 4p + 1)

2

is the larger of the two positive roots of z2 + (p − 1)z + p/2.

The plot in Figure 1 gives the waste as a function of p (together with simu-
lation results).

In other words, this dynamical system exhibits a phase transition from zero
waste (for p < p∗ = 2 −

√
3) to positive waste (p > p∗ = 2 −

√
3).

At first glance, this phase transition might seem surprising; indeed, one would
expect that the asymptotic yield increases as p decreases (one releases the 2-
tiles more slowly, and they become easily 3-tiles absorbing relatively abundant
1-tiles), but in principle some positive amount of wasted material would seem
natural for any system of this kind. Yet, there is some threshold, where 100% of
efficiency is achieved, still for a positive ratio p.

A closer look shows what happens here. When p is large, the linear system
describing the trajectories has real eigenvalues and the eigenvectors are pointing
in the 2nd and 4th quadrants. Then the eigenvalues become imaginary. At p =
2−

√
3 one more bifurcation occurs, but the eigenvectors are now in the 1st and

3rd quadrants. See Figure 2 for details.
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Fig. 1. Phase transition in waste as a function of p
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Fig. 2. Eigenvectors of the linear system

5 Phase transition for general systems

In general, the phase transition described in the preceding section for N = 3 can
be observed for any N . That is

Theorem 1 The space of parameters P = {(pij), pij ≥ 0, j < N} contains open

nonempty sets P0 and P+ such that for parameters in the closure of P0 the

limiting yield NxN (∞) = 1, while for parameters in P+ the limiting waste is

positive, NxN (∞) < 1.

We will just sketch a proof here; a complete exposition will appear elsewhere.
To prove the theorem, we first exhibit, for any N , some systems that have

positive waste. Clearly, this will prove that P+ is nonempty; its openness would
follow from general results on the continuous dependence on parameters.



5.1 Some special systems, for arbitrary N

Let us set pij = 0 when both i, j > 1, i.e. we assume that the rates are non-
vanishing only when at least one of the tiles being attached has size 1, a common
assumption as noted in [11]. We call this incremental self assembly. Further, set
p1,1 = 1, p1,i = 1/2, j > 1. (In the original set-up this would result if tile pairs

were chosen at a rate proportional to their concentrations.) We covered this case
recently in [9]. There, we arrived promptly at

dx1

dt
= −x1(2x1 −

N−2
∑

k=2

xk)

dxk

dt
= x1(xk−1 − xk), k = 2, . . . , N − 1.

or, with the substitution ds := x1dt, the system

dx1

ds
= −2x1 −

N−2
∑

k=2

xk

dxk

ds
= xk−1 − xk, k = 2, . . . , N − 1.

Surprisingly, this system can be solved explicitly, as we showed in [9]:

xk(s) =
1

N

N−1
∑

`=1

(ε−` − 1)ε`keλ`s

where λ` = ei2π`/N − 1, ` = 1, . . . , N − 1. In particular, one can deduce that
the waste (the residual mass not precipitated as the product (N) in the limit
x1 → 0) is always positive for these values of pij (and in fact, the total wasted
mass rapidly converges to 1 as N grows).

5.2 Phase transitions for arbitrary N

On the other hand, consider the incremental system with p1,1 close to 0. We
claim that the yield in such systems is 100%, for p = p1,1 > 0 small enough.
Indeed, one can show that for small p, the corresponding linear system described
by the matrix















−2p −2p1,2 0 . . . −2p1,N−1

p −2p1,2 0 . . . 0
0 2p1,2 −2p1,3 . . . 0
...

...
0 0 0 . . . −2p1,N−1















has a left eigenvector (c1, . . . , cN−1) with c1 > 0, ci < 0, i > 1. This eigen(co)vector
defines a hyperplane which separates the initial point x0 = (1, 0, . . . , 0) from the
face of the waste {x1 = 0,

∑

i>1
xi > 0} on the phase space simplex.



0 =0x
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Fig. 3. Existence of phase transitions for general N

Standard arguments (homogeneity of the system and a certain structural
stability) prove that a separating hypersurface survives small perturbations of
the coefficients.

5.3 An example

A small illustration is given in Figure 4 and shows the critical curve, i.e., plot
of (p, λ) for which the matrix describing the linearized system for N = 4, with
p1,1 = p has λ as eigenvalue. The prediction is that the phase transition happens
at the critical value of p(λ) closest to the origin, i.e., at p ≈ 0.012.

The results of experiments are shown in Figure 5.

6 The reversible process

Higher, indeed maximum, yields are achieved by the reversible process in which
i-tiles, i > 1, can decompose, returning two smaller tiles to the system. Re-
versibility is controlled by a time-varying parameter u(t) and is reflected in
“control terms” appended to the rate equations. For example, in [9], we consid-
ered the triangle (N = 3) case in the incremental model. We have

dx1

dt
= −2x2

1 − x1x2 + 2ux2,

dx2

dt
= x2

1 − x1x2 − ux2

One may think of u(t) as time-varying temperature.
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Fig. 4. N = 4 example
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Fig. 5. Experimental results showing phase transitions

The goal now is to set up the control so that, for a given time horizon T , the
concentrations converge to a state at time T in which the yield is maximized.
We showed in [9] that the optimal strategy is defined by

u(t) =
7/2 · 1{t > τ}

3(t − τ)/2 + 1/α

where τ := inf{t > 0 : x1 = 2x2} and x2(τ) = α must be determined numerically.
In words, the system is allowed to evolve (absent control) from the initial state



x1 = 1 until such time as the concentration of 1-tiles first becomes exactly twice
that of 2-tiles (at time τ). At this point, control is exerted as above so as to
preserve the relative concentrations of 1- and 2-tiles.

The numerical solutions for x1, x2 and x3 as functions of time for the re-
versible process in the optimal-control case are shown in Figure 6 taken from [9].
As can be seen in the figure, the reversible set-up results in a higher yield than
the irreversible one.
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Fig. 6. Concentrations of 1, 2 and 3-tiles as functions of time for the reversible process
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