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Abstract

Self assembly (SA) processes are fundamental to a number of computational and
fabrication technologies in nanoscience. Indeed, their efficiency and robustness are crit-
ical to the success of the underlying concepts. SA typically involves random phenomena
at some level, yet the development of reference theories for the study of random SA pro-
cesses is scarcely begun. This paper studies a model of SA processes in which assembled
objects are built one element (tiles, molecules, . . . ) at a time. The contributions here
are threefold: First, the hydrodynamic limit is introduced as a powerful tool for the
study of SA, essentially reducing the study of complex stochastic structures to the so-
lution of differential equations. A second contribution consists of explicit results on
SA yield, the fraction of the absorbing state that contains the desired self-assembled
objects. It is shown that, asymptotically, yields are factorially small in the sizes of the
assembled objects. Low yields motivate our third contribution: the analysis of a control
mechanism (modeling temperature variation for example) that implements reversible
SA, where disassembly of objects can be exploited to improve the overall assembly
process. An optimal control is exhibited for obtaining 100% yields.

1 Introduction

Self assembly (SA) refers to the basic bottom-up paradigm of numerous constructive and
computational processes that have applications spanning nanoscale electronics, biotechnol-
ogy, medicine, and sensor networks. Nanofabrication includes molecular SA [8, 6, 9] (e.g.,
polymerization) by which novel functional materials are produced, and nanowire SA for
producing elementary nanodevices such as switches, gates, and memory elements [7] which
can be further assembled into nanocomputers. On the computational side, SA plays a
fundamental role in amorphous computing [1] and DNA computing [3, 5].
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The dramatic advances in nanoscience belong primarily to the experimental scientists;
as in other applications, mathematical modeling and the development of reference theories
tend to follow experimental proofs of concept. There have been a number of combinatorial
studies [3, 4], but SA is also typically a stochastic phenomenon; and although insightful
stochastic models have been virtually ubiquitous in the physical sciences, they remain a
fertile ground for SA research. The early work of Adleman and colleagues sets the stage,
and serves as our point of departure. In this paper, we broaden their approach to SA
modeling in a way that facilitates yield calculations for irreversible SA and the study of an
intriguing problem of minimizing self-assembly times under a simple control on reversibility.
To explain these issues in detail, we first describe the probability model of Adleman et al [2].

1.1 Stochastic polymerization.

In the DNA-computing terms of [2], which we use here, elementary particles called tiles
combine to form progressively larger geometric shapes, or complexes, called supertiles. In
the general tile-system model, there is a set of tile types and a collection of bonding (sticking
or glueing) rules governing how tiles and supertiles combine into larger supertiles. Stochastic
analysis of such systems has so far been limited to a process called n-linear polymerization
[2]. In this problem, there are n tile types T1, . . . , Tn; a tile of each type has a left and right
face at which bonding can take place. The right face of a tile of type Ti can bond to the left
face of a tile of type Ti+1, i = 1, . . . , n − 1, and these are the only bonds possible. Thus,
supertile types are restricted to subsequences of T1, T2, . . . , Tn. In this setting, SA can be
viewed as taking place on the integers, with a unit-width tile between every pair of adjacent
integers. The initial ordering is uniformly random with equal concentrations of the n tile
types. SA proceeds in time steps called “tosses”. At the beginning of each step all allowable
bondings occur independently with probability σ; then, at the end of each time step, the
entire sequence is re-randomized (after being “tossed into the air” the supertiles return to
random positions) with each existing bond being broken independently with probability σ′.
Questions resolved in [2] include the existence of equilibria, a thermodynamic rationalization
of the SA process, and, in the irreversible case with σ′ = 0, an estimate of the time to reach
the absorbing state in which only the supertiles with type sequences T1, . . . , Tn exist.

1.2 Incremental SA

In the title process, all elementary, unit tiles are subject to the same bonding rules, or
equivalently, the system is homogeneous with just a single tile type. Bonding rules are
allowed to vary only among supertiles containing at least 2 tiles. Hereafter, we say i-tile,
i ≥ 1, when referring to a supertile containing i unit tiles. Initially, consider a system of
n 1-tiles, with n large, and assume that assembly events occur in a rate-1 Poisson stream.
Let ηi(t) denote the number of i-tiles at time t of the process, so the initial condition of the
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assembly process is η1(0) = n, ηi(0) = 0, i > 1. Introduce the time-scaled concentrations

x
(n)
i (t) =

ηi(nt)
n

so that ∑

i≥1

x
(n)
i (t) = 1 (1)

for all n, t. We focus on the fluid limit, n → ∞, of the assembly process, which we denote
by {xi(t)}. Informally, by a mean-field argument, the rate of formation/decomposition of
i-tiles is proportional to the concentrations of its constituent tiles. At assembly times in a
discrete model, this corresponds to choosing the assembling tiles independently at random
with probabilities given by their concentrations. Throughout the paper we assume that
each possible pair of tiles is chosen uniformly at random. Alternatively, one could examine
the model in which two tiles are chosen at random and then glued if possible. This approach
leads in the usual way to systems of differential equations, as illustrated below. Note that
there is no intrinsic limitation to spatial linearity in this model. Also, since we are exploring
behavior in the fluid limit, our results also apply to situations in which there are different
tile types, as long as they have the same initial concentrations and symmetric behavior. For
example, suppose the final supertiles are 3-tiles, there are 3 tile types, no two tiles of the
same type can appear in the same supertile, and the concentrations of the 3 tile types are
equal in the initial state.

The next two sections present the analysis of a baseline model for calculating yields and
for studying the problem of optimizing concentrations in reversible systems. The irreversible
model is defined by a parameter N > 2, an initial state consisting only of 1-tiles, and the
following (incremental) bonding rule:

Two i-tiles can bond together only if one of them is a 1-tile and the other is an
i-tile for some i < N .

Thus, the N -tiles are the objective of the assembly process. The yield of the irreversible
process is the fraction β of 1-tiles that have assembled into N -tiles in an absorbing state
containing only i-tiles with 1 < i ≤ N .

2 Assembly of triangles

We begin with an analysis of the case N = 3, which we call the case of triangles, for
both irreversible SA and a reversible version in which the bonding rule is augmented by a
“breaking” rule:

The bonds of 2-tiles are broken independently, each with a given probability.
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2.1 The irreversible process

For 1-tiles, we express the dynamics over a small time interval [t, t + ∆t] as

x
(n)
1 (t + ∆t) = x

(n)
1 (t)− 2[x(n)

1 ]2(t)∆t− x
(n)
1 (t)x(n)

2 (t)∆t + o(∆t) (2)

from which one obtains

dx
(n)
1

dt
= −2[x(n)

1 (t)]2 − x
(n)
1 (t)x(n)

2 (t) (3)

and in the fluid limit, n →∞,
dx1

dt
= −2x2

1 − x1x2 (4)

with x1(0) = 1. The factor of two reflects the fact that two 1-tiles are removed from the
population for each 2-tile formed. A similar argument leads to

dx2

dt
= x2

1 − x1x2 (5)

dx3

dt
= x1x2 (6)

with x2(0) = x3(0) = 0. There are no 1-tiles in the absorbing state, so by (1), the yield is

β = 3x3(∞) = 1− 2x2(∞)

To find x2(∞), we could treat x2 as a function y(·) of x ≡ x1, in which case (4)-(5) would
reduce to the ODE

dy

dx
=

y − x

y + 2x
(7)

with the boundary condition y(1) = 0 (there are no 2-tiles in the initial state where x =
x1 = 1). The change of variable ŷ = y/x would then convert this to a separable ODE which
could be integrated to give y as an implicit function of x. However, it is more instructive
to apply the following approach, as it easily generalizes to arbitrary N . The trajectories of
(x1, x2) described by (7) are also described by the linear system

dx1

ds
= −2x1 − x2 (8)

dx2

ds
= x1 − x2 (9)

where ds = x1dt, and where, as functions of s, x1(0) = 1, x2(0) = 0. This system is readily
solved explicitly. Indeed, as is easily checked, the solution is given by

x1(s) = e−3s/2
(
cos

√
3

2 s−
√

3
3 sin

√
3

2 s
)

x2(s) = 2
√

3
3 e−3s/2 sin

√
3

2 s
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Figure 1: Concentrations of 1, 2 and 3-tiles as functions of time for the irreversible
process. The assembly starts at time t = 0.

The value of x1(s) is 0 at

s∗ =
2
√

3π

9
which corresponds to the state at which there are no more 1-tiles. At that point

x2(s∗) = exp
(
−
√

3π/3
)
≈ 0.163033535−

This gives a yield of
β = 1− 2x2(s∗) = 0.67393293+

so that roughly a third of the 1-tiles are wasted in pairs.
The numerical solutions for concentrations of 1, 2 and 3-tiles as functions of time is

shown in Figure 1.

2.2 The reversible process

Higher, indeed maximum, yields are achieved by the reversible process in which 2-tiles can
decompose, returning two 1-tiles to the system. Reversibility is controlled by a time-varying
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parameter u(t) and is reflected in “control terms” appended to (4) and (5) as shown below:

dx1

dt
= −2x2

1 − x1x2 + 2ux2

dx2

dt
= x2

1 − x1x2 − ux2

It might be appropriate to think of u(t) as time-varying temperature.
The goal now is to set up the control so that, for a given time horizon T , the concen-

trations converge to a state at time T in which the yield is maximized. First, to maximize
the growth rate dx3

dt = x1x2 of 3-tiles for a given number, say x1 + 2x2 = c, of all 1-tiles as
yet unassembled into 3-tiles, we must take x1 = c/2 and x2 = c/4, i.e., we must have twice
as many 1-tiles as 2-tiles. Then, to find the desired control u(t), we solve a related problem

dz1

dt
= −2z2

1 − z1z2 + 2wz2

dz2

dt
= z2

1 − z1z2 − wz2

dz3

dt
= z1z2

z1 = 2z2

with z1(0) = 2K, z2(0) = K, and z3(0) = 0, for some K > 0. Solving this system gives
w = 7z2/2, which results in

z1 = 2z2 =
4w

7
=

2
3t/2 + 1/K

and
z3 =

4K

3
− 4/3

3t/2 + 1/K

Then going back to the original problem, the optimal strategy is defined by

u(t) =
7/2 · 1{t > τ}

3(t− τ)/2 + 1/α

where τ := inf{t > 0 : x1 = 2x2} and x2(τ) = α must be determined numerically. In words,
the system is allowed to evolve (absent control) from the initial state x1 = 1 until such time
as the concentration of 1-tiles first becomes exactly twice that of 2-tiles (at time τ). At
this point, control is exerted as above so as to preserve the relative concentrations of 1- and
2-tiles.

The numerical solutions for x1, x2 and x3 as functions of time for the reversible process
in the optimal-control case are shown in Figure 2. As can be seen in the figure, the reversible
setup results in a higher yield than the irreversible one.
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Figure 2: Concentrations of 1, 2 and 3-tiles as functions of time for the reversible
process under the optimal control. The assembly starts at time t = 0. After time
t = τ the ratio of x1/x2 is fixed at 2. The dashed line indicates the concentration
of 3-tiles in the corresponding irreversible process.

3 The irreversible process for arbitrary size objects

We return to the irreversible model and study the yield for large N . First, replace the
system (8)-(9) by the easy generalization

dx1

ds
= −2x2

1 − x1

N−1∑

k=2

xk

dxk

ds
= x1xk−1 − x1xk, k = 2, . . . , N − 1
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with initial conditions x1(0) = 1 and xk(0) = 0, k = 2, . . . , N − 1. Introducing a new
variable ds = x1 dt then yields the linear system

dx1

ds
= −2x1 −

N−2∑

k=2

xk

dxk

ds
= xk−1 − xk, k = 2, . . . , N − 1. (10)

Next, let A be the coefficient matrix of this system, and let E be the identity matrix of
dimension N − 1. In order to obtain the characteristic roots of the system we compute

det(A− λE) = det(Ã− (λ + 1)E),

where

Ã =




−1 −1 −1 . . . −1
1 0

1 0
...




Exploiting the structure of Ã, we find that

det(A− λE) = (−1)N−1 (λ + 1)N − 1
(λ + 1)− 1

which implies that the characteristic roots are given by

λ` = ei2π`/N − 1, ` = 1, . . . , N − 1 (11)

with i =
√−1. Therefore, the xk as functions of s have the following form

xk(s) =
N−1∑

`=1

ck `e
λ`s (12)

for coefficients ck` to be determined. Substitution of (12) into (10) results in

N−1∑

`=1

λ`ck `e
λ`s =

N−1∑

`=1

(c{k−1} ` − ck `)eλ`s, k = 2, . . . N − 1

from which one obtains the recurrence ck `(λ` + 1) = c{k−1} ` with the solution

ck ` = (λ` + 1)−k+1c1 ` (13)
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For notational convenience let c` ≡ c1 `, ` = 1, . . . , N−1. Combining (13) with (12) produces

xk(s) =
N−1∑

`=1

c`e
−i

2π`(k−1)
N eλ`s (14)

At this point all xk are defined in terms of the unknown c`. In what follows we use the
initial conditions x1(0) = 1 and xk(0) = 0, k = 2, . . . , N − 1 to determine the unknown
coefficients. With ε := e−i 2π

N , the initial conditions and (14) result in

N−1∑

`=1

c` = 1

N−1∑

`=1

c`ε
`(k−1) = 0, k = 2, . . . , N − 1

This system can be rewritten in the matrix form BC = U ,



1 1 1 1 1 . . . 1
ε ε2 ε3 ε4 εN−1

ε2 ε4 ε6 ε2N−2

...
...

εN−2 . . . εN2−2N+2







c1

c2

c3
...

cN−1




=




1
0
0
...
0




By Cramer’s rule the solution is given by

c` =
det B`

detB
(15)

where B` is obtained from B by replacing the `th column with U . It can be shown that,
because of the form of B, one has

detB =
∏

1≤j<k≤N−1

(εk − εj) (16)
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whereupon, after tedious algebra,

detB` = (−1)`+1

∣∣∣∣∣∣∣∣∣

ε ε2 . . . ε`−1 ε`+1 . . . εN−1

ε2 ε4 . . .
...

εN−2 . . .

∣∣∣∣∣∣∣∣∣

= (−1)`+1ε
N(N−1)

2
−`

∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1 . . . 1
ε ε2 . . . ε`−1 ε`+1 . . . εN−1

...
εN−3 ε2N−6 . . .

∣∣∣∣∣∣∣∣∣

= (−1)`+1ε
N(N−1)

2
−`

∏

1≤j<k≤N−1
j,k 6=`

(εk − εj)

Recall that ε = e−i 2π
N , which in conjunction with the preceding formula, implies

detB` = (−1)N+`ε−`
∏

1≤j<k≤N−1
j,k 6=`

(εk − εj) (17)

Substituting (16) and (17) into (15) one obtains

c` = (−1)N−1ε−`




∏

1≤j≤N−1
j 6=`

(εj − ε`)




−1

= (−1)N−1(1− ε`)


 ∏

1≤j≤N−1

(εj − 1)



−1

where, to get the last expression, we used the properties of ε = e−i 2π
N . Hence, in view of (14)

xk(s) =


 ∏

1≤j≤N−1

(1− εj)



−1

N−1∑

`=1

(ε−` − 1)ε`keλ`s

Since x1(0) = 1, the continued product must evaluate to N , so

xk(s) =
1
N

N−1∑

`=1

(ε−` − 1)ε`keλ`s (18)
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For the yield calculation, let s∗ be the first time that x1(s) = 0 (no singles are left), i.e.,
s∗ = inf{s : x1(s) = 0} is the time the system enters an absorbing state in the s-domain.
Then by (18) a compact formula for the yield develops as follows:

β = 1−
N−1∑

k=1

k xk(s∗) = 1−
N−1∑

`=1

ε−` − 1
ε` − 1

eλ`s∗

= 1 +
N−1∑

`=1

ε−`eλ`s∗

=
N−1∑

`=0

ε−`eλ`s∗

where λ0 = 0. Introducing the formula for the λ` given by (11), we find that

β = e−s∗
N−1∑

`=0

ε−`
∞∑

k=0

ε−k`sk∗
k!

= e−s∗
∞∑

k=0

sk∗
k!

N−1∑

`=0

ε−`(k+1)

Next, we observe that
N−1∑

`=0

ε−`k =
N−1∑

`=0

ε`k =

{
N k = mN, m ∈ Z
0 otherwise

(19)

and hence

β = e−s∗
∞∑

k=1

NskN−1∗
(kN − 1)!

(20)

Returning to (18), we set k = 1 and use x1(0) = 1 to obtain the value of s∗

0 = N−1e−s∗
N−1∑

`=0

(1− ε`)eε−`s∗

= N−1e−s∗
∞∑

k=0

sk∗
k!

N−1∑

`=1

[
ε−`k − ε−`(k−1)

]

Thus, in view of (19), s∗ satisfies

1− s∗ +
∞∑

k=1

sk∗
(kN)!

(
1− s∗

kN + 1

)
= 0 (21)
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Computing s∗ numerically from this equation and substituting into (20) then gives the yield.
Consider next asymptotics in N . Recalling that ds = x1 dt we see that s∗ can be

interpreted as the integral of x1 in the time domain, and so s∗ = s∗(N) is a nondecreasing
function in N . This coupled with (21) leads to

s∗(N) = 1 + O(1/N !)

which together with (20) gives

Proposition 1 As N →∞ the yield satisfies

β(N) =
N2

N !
(1 + o(1))

4 Concluding remarks

The small yields of Proposition 1 lead to obvious, yet exciting challenges. We mention just
two. First, can the analysis of the reversible process be generalized to larger object sizes?
Second, what can be proved about yields in the more general SA process where any two
objects can combine so long as the size of the newly created object does not exceed the size
of the final object of the assembly? Simulations of such processes have been conducted for
values of N up to 20. The yield results shown in Fig. 3 suggest that generalizing incremental
assembly can lead to substantial increases in yield. The monotonicity shown in the figure is
to be expected, but the dependence on parity is intriguing; yield for any even final-object
size N ≥ 4 is higher than that for the odd object size N − 1.
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