
Introduction to Probability:
Lecture Notes

1 Discrete probability spaces

1.1 Infrastructure

A probabilistic model of an experiment is defined by a probability space consist-
ing of a set (sample space Ω) of sample points or outcomes (exhaustive collection
of elementary outcomes of the experiment) and a probability law P which as-
signs to each event in (subset of) Ω a probability satisfying three axioms: (1)
nonnegativity, i.e., all probabilities are nonnegative; (2) additivity, i.e., the prob-
ability of the union of disjoint events is the sum of the probabilities of the events
taken alone; and (3) normalization, i.e., P (Ω) = 1: the sum of the probabilities
of all the outcomes is 1. In cases of interest here, the probability law is defined
more simply by probabilities assigned to each of the outcomes.

The law of total probability refers to a partition1 {Ai} of Ω into n subsets
and states that, for any event B,

P (B) =
∑

1≤i≤n

P (B ∩Ai)

Conditional probabilities are defined on subsets of Ω: P (A|B) is a probability
on the (sub-) sample space B ⊂ Ω and is the sum of the probabilities of the
sample points in A ∩ B normalized by the probability P (B) in the original
probability space, assuming that P (B) > 0, i.e.,

P (A|B) =
∑

ω∈A∩B

P ({ω})
P (B)

.

We call P (A|B) the conditional probability of event A given event B (or given
that event B has “occurred” or “holds”). The multiplication rule generalizes
P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) and is given by

P (A1∩. . .∩An) = P (An|A1∩. . .∩An−1)P (An−1|A1∩. . .∩An−2) · · ·P (A2|A1)P (A1)

Events A and B are independent if P (A ∩B) = P (A)P (B); more generally,
events A1, A2, . . . , An are independent if the probability of the intersection of
any subset of the events is the product of the probabilities of the individual
events.

Bayes’ rule says that, for any partition {A1, . . . , An} of Ω,

P (B|A) =
P (A|B)P (B)∑

1≤i≤n P (A|Ai)P (Ai)

1Recall that a partition of a set S is a collection of mutually disjoint (mutually exclusive)
subsets whose union is S.
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Typically, as in the text, event B is one of the events in the partition {Ai}.
Also, n = 2 is common, so that the rule, with B = E, A1 = E, A2 = Ec, has
the form

P (E|A) =
P (A|E)P (E)

P (A|E)P (E) + P (A|Ec)P (Ec)

Boole’s inequality generalizes P (A ∪B) = P (A) + P (B)− P (A ∩B) ≤ P (A) +
P (B) and reads

P (A1 ∪ . . . ∪An) ≤
∑

1≤i≤n

P (Ai)

with equality (according to the additivity axiom) when the Ai’s are mutually
disjoint.

1.2 Counting

We need to count permutations, combinations, and partitions, and to distinguish
sampling with and without replacement.

Permutations. The number of permutations of n elements taken k at a time
is

(n)k = n(n− 1)(n− 2) . . . (n− k + 1)

Thus, the number of different orderings of n elements is n!.
In population sampling terms, if you choose k people sequentially without

replacement out of a population of n, then there are (n)k ordered samples. If
the sampling of k people from the population of n is done with replacement,
then people can be chosen more than once and the number of possible samples
is nk. Thus, the probability that a random sample2 with replacement actually
chooses k distinct people is (n)k/nk.

Example: The birthday paradox is created by the observation that the above
probability is less than 1/2 for n = 365 possible birthdays, and a random sample
containing only k = 23 birthdays. If you choose k people at random, you are
picking k out of 365 possible birthdays (nearly) at random, and so if k = 23,
the chances are better than 1/2 that at least two of the k have a common
birthday(!).

Combinations. The number (n)k counts k! permutations for each distinct
subset of k elements. Thus the number of k element subsets of an n-element
set, i.e., the number of combinations of n objects taken k at a time, is

(n)k

k!
=

(
n

k

)
=

(
n

n− k

)
=

n!
(n− k)!k!

2This will always refer to a sample taken uniformly at random with all samples equally
likely.
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which is the familiar binomial coefficient. This is also called the number of
combinations of n elements taken k at a time. In population sampling terms, if
you choose k people sequentially without replacement out of a population of n,
then if the ordering of the sample is ignored, there are

(
n
k

)
distinct samples.

Partitions. The number of ordered partitions of an n element set into subsets
of sizes n1, n2, . . . , nr, (

∑
1≤i≤r = n) is given by the multinomial coefficient

(
n

n1 n2 · · ·nr

)
:=

(
n

n1

)(
n− n1

n2

)
· · ·

(
n− n1 − · · · − nr−1

nr

)

=
n!

n1! · · ·nr!

Now consider a set of indistinguishable elements (an urn of identical balls) and
ask how many ways can the elements be partitioned into an ordered collection of
r subsets with sizes summing to n? That is, how many choices for (n1, . . . , nr)
are there such that n1+· · ·+nr = n? Consider lining up in n+r−1 positions, in
some order, the n elements along with r−1 separators. The subsets are defined
as the sequences of elements between successive separators; adjacent separators
are allowed and define empty subsets. An illustration is given by the obvious
notation ∗||∗∗∗∗|∗|∗∗∗, where n = 9, r = 5 and the sequence of r subset sizes is
1,0,4,1,3. There are (n+ r−1)r−1 ways of choosing the separator locations, but
each ordered collection of subsets is represented r! times in this count, so one
obtains the answer

(
n+r−1

n−1

)
=

(
n+r−1

r

)
. A similar argument (left as an exercise)

shows that if empty sets are disallowed, the answer changes to
(
n−1
r−1

)
.

1.3 Discrete Random Variables

Given some underlying probability space, random variables (rv’s) are functions
from the sample space Ω to the set R of real numbers. For a discrete rv X,
which is our initial interest, the range of X is discrete and typically a subset of
the integers, but the domain may be continuous or discrete. We usually succeed
in using capital letters towards the end of the alphabet to denote rv’s. Many
times the sample points ω ∈ Ω are integers and the mapping X is the identity
map: X(ω) = ω, for all ω ∈ Ω.

Example 1: Consider the toss of the conventional 6-sided die, where Ω =
{1, . . . , 6} and P (A) = |A|

6 , A ∈ 2Ω, is the probability law. The definition
X(ω) = ω, 1 ≤ ω ≤ 6, is more an introduction of new terminology than an
introduction of new probabilistic concepts. ¥

3



More generally, the subsets {ω ∈ Ω|X(ω) = x} form events typically defined
by some property.

Example 2: Consider the toss of 2 dice with the sample points being all pairs
(a, b) with a and b integers in {1, 2, 3, 4, 5, 6}. Define

X((a, b)) = a + b

so the property is the sum of the component values; the sets {ω ∈ Ω|X(ω) = x}
are those points all having the sum x of component values.
Exercise: Find the probabilities of all values in the range of X.

¥

The mapping from the range RX of X into the set of probabilities P ({ω ∈
Ω|X(ω) = x}) is called the probability mass function (or pmf) of X and is
abbreviated pX(x) with the underlying probability space understood. By our
definitions, it is clear that

∑
x∈RX

pX(x) = 1 (verify this). We also adopt the
simpler notation, for a given set S ⊆ R,

P (X ∈ S) = P ({ω ∈ Ω|X(ω) ∈ S})

again with the underlying probability space understood. Set membership will
be denoted in customary ways, e.g., when X ∈ S if and only if 1 ≤ X ≤ n,
then we will usually write P (1 ≤ X ≤ n). In Example 2 above, we write
P (X = 2) = 1/36, P (X = 3) = 1/18, P (X = 4) = 1/12, etc.

Functions of rv’s give rv’s. If Y = f(X) then P (X = x) = P (Y = f(x)) and
P (Y = y) = P (X ∈ {x|f(x) = y}).

Example 3: Let X have a uniform pmf on the integers {1, . . . , 2n} for some
positive integer n, and let Y be the function Y = bX/2c, the largest integer
no larger than X/2. Clearly, 0 ≤ Y ≤ n, and except for x = 1 and x = n,
{x|f(x) = y} has two integers, 2y and 2y + 1. We get

P (Y = y) =





1
2n , y = 0
1
n , 1 ≤ y ≤ n− 1
1
2n , y = n

¥
Multiple rv’s defined on the same probability space have joint pmf’s and are

handled in analogy with the probabilities P (A∩B) of Chapter 1. The notation
for the joint probability that X = x and Y = y is

pX,Y (x, y) := P (X = x, Y = y) = P (Ω{X=x} ∩ Ω{Y =y})

where we define, for any such rv Z

Ω{Z=z} := {ω ∈ Ω|Z(ω) = z}
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In analogy with the Theorem of Total Probability of Chapter 1, we see that

pX(x) =
∑

y

pX,Y (x, y)

where, in this context of multiple rv’s, pX(x) is called a marginal pmf (distri-
bution).

1.3.1 Conditional probabilities and independence

The related concepts like conditional probabilities and independence extend in
the obvious ways, as does the notion of a function of an rv. Let S be a subset
of the range of an rv X in a given probability space. Then P (X = x|S) is to
be interpreted as P (B|A) (as described in Chapter 1) with B = Ω{X=x} and
A = {ω ∈ Ω|X(ω) ∈ S}. Thus,

P (X = x|S) =

{
pX(x)∑

y∈S pX(y) x ∈ S

0 x /∈ S

Note that the above function is a bona fide pmf; in particular the normal-
ization axiom holds.

For two rv’s X and Y defined on the same probability space, the conditional
probability

pX|Y (x|y) := P (X = x|Y = y) = P (X = x, Y = y)/P (Y = y)

is the above conditional probability with S = Ω{Y =y}. The rv’s X and Y are
independent if and only if P (X = x, Y = y) = P (X = x)P (Y = y) for all x, y
in the ranges of X and Y , respectively. The concept extends to multiple rv’s as
it did to multiple events in Chapter 1.
Example 4: The roll of a pair of identical n-sided dice called die 1 and die 2 is
modeled by two rv’s Xi, i = 1, 2, giving the respective results for die 1 and die
2. The dice behave independently and we have, for each possible result x1, x2,

pX1,X2(x1, x2) = pX1|X2(x1|x2)pX2(x2)
= pX2|X1(x2|x1)pX1(x1)
= pX1(x1)pX2(x2)
= 1/n2

Now define a function Y = min(X1, X2) and compute as an exercise

P (Y = k) =
2(n− k) + 1

n2
, 1 ≤ k ≤ n

¥
Note that we have bid a fond farewell to the explicit mention of probability

spaces; we now speak primarily of rv’s and their pmf’s.
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1.3.2 Expectation

Random variables typically represent measurements, counts, etc. so it is of
interest to know their averages. To motivate our definitions, suppose we want
the average daily peak wind speed recorded in New York over the past n days.
Most people would understand that to mean the sum of the n peaks divided by
n. Now if n is large and speeds are rounded to integers denoting miles per hour
(mph), which is standard, we will have many repetitions of the same speed. If
ni is the number of times the peak is i mph in the past n days, then we can
organize the calculation of the average αn as

αn =
1
n

∑

i≥0

ni × i

=
∑

i≥0

ni

n
× i

where
∑

i≥0 ni/n = 1. Now for fairly large n we can interpret ni/n, the fraction
of the days with a peak wind speed of i mph, as an estimate of the probability
that a randomly picked one of the last n days has a peak wind speed of i mph.
Formally, a model of this situation defines X as an rv giving the daily peak
wind speed, lets pX(i) ≈ ni/n be its pmf, and defines the expected value of X
to be

EX :=
∑

i≥0

ipX(i)

which is to be compared with αn above. EX is also called the mean, expectation,
or simply average of X. The expected value of some function g(X) of the peak
wind speed is defined as you would expect,

Eg(X) =
∑

i≥0

g(i)pX(i)

In particular, EXk is called the k-th moment of X, so the mean is also known
as the first moment.

The centered version of the rv X is X̂ = X − EX and is so named because
its mean is obviously 0. The second moment var(X) := EX̂2 of the centered
version is called the variance of X. The square root of the variance is called
the standard deviation of X and clearly has the same units as X. The standard
deviation, denoted by σX , is a classical measure of how much mass the pmf
concentrates away from the mean, and how spread out the pmf is.

Expressing the variance in terms of the moments gives

V arX =
∑

x

(x− EX)2pX(x)

= EX2 − 2EX · EX + [EX]2

= EX2 − [EX]2
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The mean and standard deviation of a linear function Y = aX + b of the rv X:

EY = aEX + b

σY = aσX

The standard deviation is not influenced by the location parameter b (as it just
measures dispersion around the mean), but it scales, as does the mean, by the
factor a.

The conditional expected value of X given the event A, i.e., the mean of the
distribution P (X|A), is denoted by

E[X|A] =
∑

x

xP (X = x|A)

Similarly, for X and Y defined on the same probability space, we have the
conditional expectation

E[X|Y = y] =
∑

x

xpX|Y (x|y)

from which, in analogy with the theorem of total probability,

EX =
∑

y

∑
x

xpX,Y (x, y)

=
∑

y

∑
x

xpX|Y (x|y)pY (y)

which can be put in the form of the theorem of total expectation

EX =
∑

y

E[X|Y = y]p(Y (y)

It follows directly from the definition of independence of rv’s that, for any
given functions g, h,

E[g(X)h(Y )] = Eg(X)Eh(Y )

Moments need not exist. For example, the zeta pmf is

pX(k) =
1

ζ(s)
· 1
ks

, k ≥ 0

with s > 1 a parameter, and with ζ(s), the Riemann zeta function, being the
normalization constant

ζ(s) =
∑

k≥0

1
ks

so called because it ensures the normalization axiom of the probability law.
(Restricted to a finite set, the zeta pmf becomes Zipf’s law.) Such pmf’s are
said to have heavy tails, where tails are defined formally by the numbers P (X >
n) =

∑
k>n pX(k). A tail is heavy in the sense that it approaches the axis only
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rather slowly and so has a lot of the probability mass.3 If one chooses s = 2, one
finds that the mean

∑
k≥1 1/k does not converge; the partial sums

∑
1≤k≤n 1/k,

which are known as the harmonic numbers, grow as lnn, for large n.
For another amusing example called the St. Petersburg paradox, suppose

you pay $1000 to play the following game. You start out being given $1 as your
initial fortune, and then have your fortune doubled for each successive head you
toss; when you toss your first tails, the game is over. Your expected winnings
are α− $1000 where

α = 1 · 1
2

+ 2 · (1
2
)2 + . . . + 2i−1 · (1

2
)i + . . .

=
1
2

+
1
2

+
1
2

+ . . .

= ∞
so this sounds like a good game for you. But you win back your fee of $1000 only
if you get 10 heads in a row, at least, and the odds against this happening are
worse than 1000 to 1! The game doesn’t sound so good now. The probability
of big wins is positive but very small; on the other hand, it’s not so small as to
create a finite expected value. Moral: As a measure of a pmf, the mean may
have limited usefulness in practice. To a certain extent this usefulness will be
seen by looking at the variance, which in this example, also entails a divergent
sum.

An example of this last comment, one similar to experiences you have all had,
requires the balance of two courses of action, each with the same expectation,
but much different variability. There are two routes between New York City
and Newark, the first always requiring 30 minutes. The second requires only 15
minutes 2/3 of the time, but 1/3 of the time it requires a whole hour. Which
route do you prefer? They both have a mean of 30 minutes; the first one has
a standard deviation of 0 minutes and is totally reliable, while the second has
a standard deviation of over 20 minutes to go along with the fact that it takes
1/2 the average 2/3 of the time.

Let X be defined on the positive integers {1, 2, . . . , n}. Then the mean can
also be expressed in terms of the tails as follows:

EX =
∑

0≤k≤n−1

P (X > k)

(If one expands the summands, the proof is simply a reorganization of sums,
which is left as an exercise.)

1.3.3 Important pmf’s with applications

A Bernoulli rv B takes on the value 1 or 0 with probability p or 1−p, respectively.
B can be looked upon as a mapping of coin tosses with p the bias for heads, as

3For rv’s taking on both positive and negative values, there will be two tails: the one given
above and P (X < −n)
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we discussed earlier. We have easily

EB = p

V ar(B) = p(1− p)

Sums of independent and identical Bernoulli rv’s have great importance. In
a bit string B1, . . . , Bn of length n the sum Sn of the Bi’s gives the number of
one bits. The probability that the sum is k is the probability that k of the bit
positions contain a 1 and n− k have a 0, and since there are

(
n
k

)
different ways

of choosing the positions of the 1 bits, we get

pX(k) =
(

n

k

)
pk(1− p)n−k, 0 ≤ k ≤ n

which is the binomial pmf with parameters n, p. Clearly, this pmf also gives
the probabilities of k heads in n tosses of a coin. More generally, sequences
like B1, . . . , Bn are often called sequences of Bernoulli trials with probability of
“success” p and probability of “failure” 1− p.

Before giving the mean and variance of a binomial rv, we make the following
two observations:

• The mean of a sum of rv’s (independent or not) is the sum of their means.

• The variance of a sum of independent rv’s is the sum of their variances.

The first observation is trivial to prove. To prove the second for two rv’s X
and Y , routine algebra leads to

E[X + Y −E(X + Y )]2 = EX2 + 2E(XY ) +EY 2−{(EX)2 + 2EXEY + (EY )2}

and so, since E(XY ) = EXEY by independence, we get the desired result.
Inductively, our second observation above follows for any number of independent
rv’s.

Using observations 1 and 2 on a sum of Bernoulli rv’s, we see that, for a
binomial rv,

ESn = np

V ar(Sn) = np(1− p)

Exercise: Prove these directly using the pmf for a binomial rv. ¥
If the number of throws of a standard 6-sided die is unconstrained, what is

the pmf for the number, Y , of (independent) throws that have been made when
the first ace appears? Since the throws are independent, this is given by the
geometric pmf pY (k) = (1− 5/6)k−11/6. More generally, we speak of Bernoulli
trials with success probability p, and the pmf

pY (k) = (1− p)k−1p, k = 1, 2, . . .
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defined on the positive integers. If we had asked for the pmf of the number Y ∗

of failures before getting the first success, then we would have written

pY ∗(k) = (1− p)kp, k = 0, 1, 2, . . .

which is also the geometric pmf, but defined on the nonnegative integers. (You
should be able to verify in your head that

∑
k≥0 pY ∗(k) =

∑
k≥1 pY (k) = 1.)

Using our observations on linear functions of rv’s, we have, after routine calcu-
lations,

EY ∗ = EY − 1 =
1
p
− 1 =

1− p

p

V ar(Y ) = var(Y ∗) =
1− p

p2

The Pascal pmf, commonly known as the negative binomial pmf, has con-
nections with the binomial and geometric pmf’s, and gives the probability that
the k-th success of a Bernoulli process occurs at the t-th trial. This event oc-
curs if and only if the t-th trial yields a success (with probability p) and the
preceding t − 1 had k − 1 successes (with probability

(
t−1
k−1

)
pk−1(1 − p)t−k), so

by the independence of the t-th trial from all those preceding it, the trial Xk

giving the k-th success has the pmf

pXk
(t) =

(
t− 1
k − 1

)
pk(1− p)t−k, t ≥ k ≥ 1

The numbers of trials between adjacent successes is geometric so we can find
the moments of Xk from those for a sum of k independent geometric rv’s on the
positive integers with parameter p. Then

EXk = k
1
p

V ar(Xk) = k
1− p

p2

To compute moments directly, it is most convenient to derive a recurrence. We
have

EXr =
∞∑

t=k

tr
(

t− 1
k − 1

)
pk(1− p)t−k

=
k

p

∞∑

t=k

tr−1

(
t

k

)
pk+1(1− p)t−k

=
k

p

∞∑

u=k+1

(u− 1)r−1

(
u− 1

k

)
pk+1(1− p)u−k+1

=
k

p
E[(Y − 1)r−1]
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where Y is negative binomial with parameters k + 1 and p. Set r = 1 to get
the mean above and then use the recurrence with k = 2 to obtain the second
moment, whence the variance.

The Poisson distribution is an excellent model of many natural and engi-
neering processes (e.g., the number of calls arriving at a telephone exchange
in a given time interval, the number of α particles irradiated by a radioactive
substance in a unit of volume over a given time interval, the rainfall (number
of drops) on a unit area over some time interval, flaws in crystal structures,
... . A little later in the course we will see what properties characterize such
applications. For a given parameter β, an rv X has a Poisson distribution if

pX(k) =
βk

k!
e−β , k = 0, 1, 2, . . . (1)

The mean is simply the parameter β, as is the variance:

EX =
∑

k≥0

k
βk

k!
e−β

= β
∑

k≥1

βk−1

(k − 1)!
e−β

= β

and

EX2 = β2
∑

k≥2

k(k − 1)
βk−2

k!
e−β + β

= β2
∑

k≥2

k(k − 1)
βk−2

(k − 2)!
e−β + β

= β2 + β

and so
V ar(X) = EX2 − (EX)2 = β

The binomial distribution with parameters n, p is well approximated by the
Poisson pmf for large n and small p. The following limit puts this statement on
a firm foundation: Let p = λ/n for some fixed constant λ > 0. Then

lim
n→∞

(
n

k

)
pk(1− p)n−k =

λk

k!
e−λ

To prove this, write the binomial probability as

pX(k) =
n(n− 1) · · · (n− k + 1)

nk

λk

k!

(
1− λ

n

)n−k

and verify that, for any fixed k, the first factor tends to 1 and the third factor
tends to e−λ as n →∞
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2 Continuous Random Variables

2.1 Infrastructure

Suppose we want a discrete probability model for choosing a number uniformly
at random from some continuous interval – say [0, 1] for simplicity. We could
adopt a discretization parameter ∆, assume for convenience that ∆ = 1/N , let
the range of the rv be all multiples of ∆ up to 1 (i.e., ∆, 2∆, 3∆, . . . , 1), and
assign the pmf P (X̂ = i∆) = 1/N . This would give us a model X̂ as nearly
exact as we wish, by choosing ∆ small enough, or equivalently, N large enough.

But mathematically it is usually convenient to work with the continuous
limit itself, although as a computational matter, limited-precision confines us to
the discrete world. But this transition means that we must move from the class
of discrete probability mass functions to a new class of continuous functions
called probability density functions (pdf’s). To introduce pdf’s, first define, for
the above discretization,

FX̂(k∆) :=
∑

i≤k

P (X̂ ≤ k∆),

so that
P (X̂ = k∆) = FX̂(k∆)− FX̂((k − 1)∆)

A probability, like FX̂(x), that an rv takes on a value at most some given value
x is called the cumulative distribution function of the rv (it is the probability
mass accumulated by the distribution up to and including the given value x; we
will review its properties a little later.

The pdf corresponds to FX̂(k∆)−FX̂((k−1)∆)

∆ and gives the “rate” at which
probability mass is assigned to the intervals ((k− 1)∆, k∆]. If, say, X̂ measures
length, then the probability density at a point x gives the probability mass per
unit length at point x. Informally, as k → ∞, ∆ → 0, with k∆ = x held fixed,
we have X̂ → X where X is a continuous rv with the limiting pdf

FX̂(x)− FX̂((x−∆)
∆

→ dFX(x)
dx

= fX(x),

where FX(x) =
∫ x

−∞ fX(y)dy is the cdf of the continuous rv X. Implicitly,
the limit is assumed to exist, and the cumulative distribution is assumed to be
differentiable. There are important applications in which FX is not differentiable
everywhere; these will be discussed later.

We note that, as a density, fX(x) is nonnegative, but unbounded, in contrast
to probabilities, which are bounded by 1; its fundamental role lies in giving the
probability of continuous events A, which will usually consist of one or more
intervals.

P (X ∈ A) =
∫

A

fX(x)dx
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The notion of the probability of X taking on a specific value is no longer appli-
cable; the limit of P (X̂ = k∆) is the probability mass at a point, which is 0, as
one expects in a continuous, uncountable sample space. This explains in part
why probability laws have to be defined in terms of events (sets) in general. It
also explains why we don’t have to worry about whether intervals in A have
boundary points (are open or closed).

In the usual calculus context for densities when ∆ is being taken infinites-
imally small, one often sees an informal use of the differential dx rather than
∆; in these terms, the quantity fX(x)dx is an estimate of the probability that
X falls in an interval [x, x + dx]. Thus, the connection between the discrete and
continuous theories lies in the analogy between pmf’s and differential probabili-
ties fX(x)dx with sums in the first case becoming integrals in the second. It is
then clear that the normalization condition survives as∫ ∞

−∞
fX(x)dx = 1

and a brief argument shows that expectations of functions g(X) survive as

Eg(X) =
∫ ∞

−∞
g(x)fX(x)dx

2.1.1 Important probability density functions

As can be seen from the opening example of the discrete uniform law, F (x) −
F (x−∆) = ∆. so the corresponding pdf on the continuous interval [0,1] has the
value 1, 0 ≤ x ≤ 1, and 0 otherwise. The cumulative distribution is FX(x) =
x, 0 ≤ x ≤ 1, and it takes the value 0 for x < 0 and the value 1 for x > 1. The
mean and variance are easily computed,

EX =
∫ 1

0

xfX(x)dx =
∫ 1

0

xdx = 1/2

V ar(X) =
∫ 1

0

x2dx− (1/2)2 = 1/12

Exercise: Work out the corresponding results when the interval (often referred
to as the support of the distribution) is changed to [a, b]

The continuous analog of the geometric distribution provides a more inter-
esting limit. Let Z have the geometric law

pZ(k) = p(1− p)k−1, k ≥ 1,

and suppose the lifetime T̂ of some device is modeled as Z∆ for some basic time
unit ∆ such as hours or days. We would like a more realistic model that allows
for lifetimes, T , of any duration, i.e., any positive real, with the same expected
value. Let EZ∆ = ∆/p be a constant 1/λ, so p = λ∆. The probability density
is then estimated by

FT̂ (k∆)− FT̂ ((k − 1)∆)
∆

= λ(1− λ∆)t/∆
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for k large and ∆ small, t = k∆. Now take the limit k →∞, ∆ → 0 with t = k∆
held constant to obtain T̂ → T and the density function for the exponential
distribution4

fT (t) = λe−λt, t ≥ 0

It is easy to see that this function integrates to 1 over [0,∞), and has the
cdf FX(t) =

∫ t

0
λe−λydy = 1 − e−λt, t ≥ 0. For the mean, an integration by

parts gives

EX =
∫ ∞

0

λte−λtdt = −
∫ ∞

0

t · d(e−λt)

= −te−λt |∞0 +
∫ ∞

0

e−λtdt

= 1/λ

and, using the integral for the mean,

V ar(X) =
∫ ∞

0

λt2e−λtdt− 1/λ2

= −
∫ ∞

0

t2 · d(e−λt)dt− 1/λ2

= −t2e−λt|∞0 + 2
∫ ∞

0

teλtdt− 1/λ2

= 2/λ2 − 1/λ2 = 1/λ2

Exercise: Extend these results to the Laplace, or two-sided exponential, distri-
bution

fX(x) =
λ

2
e−λ|x|, −∞ < x < ∞.

Another interesting, but more involved limit starts with the Poisson distri-
bution given in (1) and yields the normal or Gaussian law. We omit the details5

and give the limiting density function:

fX(x) =
1√

2πσ2
e−(x−µ)2/2σ2

, −∞ < x < ∞.

where, as computations will show, µ and σ2 are the mean and variance of the
distribution. Later, we will see that the normal distribution also plays a vital
role in limit theorems for sums of rv’s.

4To see this, the natural logarithm and a series expansion give

λt

∆
ln(1− λ∆) = −λt[1 + λ∆ + (λ∆)2 + · · · ] → −λt

5The limit can be established directly using Stirling’s formula, but it is actually a conse-
quence of the central limit theorem that we will cover later in the course
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To show that the normal density satisfies the normalization axiom, we first
change the variable in

∫∞
−∞ fX(x)dx to y = x−µ

σ , and then observe that it is
enough to show that

(
1√
2π

∫ ∞

−∞
e−y2/2dy

)2

=
1√
2π

∫ ∞

−∞
e−u2/2du

1√
2π

∫ ∞

−∞
e−v2/2dv

=
1
2π

∫ ∞

−∞

∫ ∞

−∞
e−(u2+v2)/2dudv = 1

For this, we change to polar coordinates, where you will recall that the differ-
ential element of area, rdrdθ, rotates a differential radial element (r, r + dr)
through a differential angle (θ, θ + dθ), and where u = r cos θ, v = r sin θ and
hence r2 = u2 + v2. Then the desired result follows from

1
2π

∫ ∞

−∞

∫ ∞

−∞
e−(u2+v2)/2dudv =

1
2π

∫ 2π

0

∫ ∞

0

re−r2/2drdθ

= −
∫ ∞

0

d(e−r2/2) = 1

To verify that EX = µ, it is enough to show that, for the rv Y = X−µ
σ ,

EY =
1√
2π

∫ ∞

−∞
ye−y2/2dy = − 1√

2π

∫ ∞

−∞
d(e−y2/2) = 0

Similarly, one finds that

EY 2 = V ar(Y ) =
1√
2π

∫ ∞

−∞
y2e−y2/2dy = − 1√

2π

∫ ∞

−∞
yd(e−y2/2)

= − ye−y2/2

√
2π

∣∣∣∣∣

∞

−∞
+

1√
2π

∫ ∞

−∞
e−y2/2dy = 1

from which it follows that V ar(X) = σ2. The zero-mean, unit-variance normal
rv Y is called a standard normal.

2.1.2 Cumulative distribution functions and tails

Recall that we introduced the tails of distributions for nonnegative rv’s; these
are just 1 minus the cdf:

P (X > x) = 1− FX(x)

For the continuous case, we have an analogous formula for the mean in terms
of the tail of a nonnegative rv:

EX =
∫ ∞

0

[1− FX(x)]dx
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which can be verified by an integration by parts.
Exercise: Extend this result to cover cases where the rv also has a tail P (X <
−x). One obtains

EX =
∫ ∞

0

P (X > x)dx−
∫ ∞

0

P (X < −x)dx

A quick review of the elementary properties of the cdf FX(x):

1. Densities and pmf’s are nonnegative so FX must be nondecreasing. The
cdf is flat (remains constant) where the pmf is 0, in the discrete case, and
correspondingly only over intervals where the density has value 0 (i.e.,
where the value of an rv can not possibly lie) in the continuous case.6

2. The normalization condition requires that FX(x) → 1 as x → ∞ and
FX(x) → 0 as x → −∞ For distributions with finite support (finite sample
space in the discrete case, and finite collection of finite intervals in the
continuous case), there will be a maximum point above which the cdf will
be 1 and a minimum point below which it will be 0.

3. In the discrete case, a pmf can be computed from its cdf by pX(k) =
FX(k)−FX(k−1) and in the continuous case with differentiable cdf’s the
pdf can be computed from fX(x) = d

dxFX(x). Note that the density can
also be computed from the tail as − d

dxP (X > x) = − d
dx [1 − FX(x)] =

fX(x).

The normal distribution has no closed form cdf; the standard normal cdf is
commonly denoted by the symbol

Φ(x) :=
1√
2π

∫ x

−∞
e−y2/2dy

with the derivative (density) sometimes denoted by ϕ(·). Because of the num-
ber and importance of its applications, tables of the standard normal cdf are
ubiquitous; if P (X ≤ x) for a Gaussian rv X with mean µ and variance σ2

is desired, then one simply consults a table for the standard normal with the
argument x−µ

σ to find

P (X ≤ x) = Φ
(

x− µ

σ

)

Working with cdf’s can be much easier than working with pmf’s or pdf’s for
certain problems. For example, the maximum of rv’s X1, . . . , Xn has a value at
most x if and only if each of the Xi’s has a value at most x, so if the rv’s are
independent, the cdf for the maximum is just the product of the cdf’s for the
individual rv’s. If desired, the pmf or pdf for the maximum can then be found

6For general rv’s to be covered later, cdf’s can make discontinuous jumps in cases where dis-
crete probability masses are combined with the continuous case. This generality is disallowed
for the moment.
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from property 3 above.

Exercises:

1. How would you, in analogy with the technique above, go about finding
the minimum of independent rv’s?

2. Show that Gaussian distributions are preserved under linear transforma-
tions, i.e., if X is Gaussian, then so is Y = aX + b.

Example: (Generating random samples.) In simulating systems in a random
environment, one must be able to generate samples of an rv from a given, general
distribution. Mathematical software and programming languages typically pro-
vide routines that generate numbers very nearly uniformly distributed on some
interval, which we may take as [0, 1] for simplicity. The problem we address
here is converting such a sample to one from any given, monotone increasing
cumulative distribution function.

If the cdf FX(x) is strictly increasing then it has an inverse F−1
X (x) that is

unique for each x in the range of X. Define the rv X̂ := F−1
X (U), where U has

the uniform distribution on [0, 1]. If we can show that X̂ has the distribution
FX(x), then we will have exhibited a method for converting a sample of U to a
sample of X, as desired. But since P (U ≤ u) = u, 0 ≤ u ≤ 1,

P (X̂ ≤ x) = P (F−1
X (U) ≤ x) = P (U ≤ FX(x)) = FX(x)

and we are done. ¥
Analysis in terms of distribution functions is also natural in developing a

formula for the densities of monotone functions. Suppose g(·) is monotonically
increasing, and hence has an inverse g−1(·). Then, if we let Y = g(X),

FY (y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g−1(y))

whereupon differentiation gives

fY (y) = fX(g−1(y))
d

dy
g−1(y)

If g(·) is monotone decreasing, it again has an inverse, but now g(X) ≤ y only
if X > g−1(y), so

FY (y) = P (g(X) ≤ y) = P (X > g−1(y)) = 1− FX(g−1(y))

and hence, by differentiation,

fY (y) = −fX(g−1(y))
d

dy
g−1(y)

But the derivative of g−1(·) is negative so the two cases can be assembled as

fY (y) = fX(g−1(y))
d

dy
|g−1(y)|

for any monotone strictly increasing or strictly decreasing function Y = g(X).
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2.1.3 Conditioning

Conditional pdf’s follow the earlier development with no conceptual change;
indeed, it is but an exercise to formulate the notion in the continuous case
with differentiable cdf’s. If X is a continuous rv with density fX(x), then the
conditional density of X given the event X ∈ A, with P (A) > 0, is

fX|A(x) =
fX(x)

P (X ∈ A)
, x ∈ A

= 0, otherwise

which clearly integrates to 1 over the set A and hence is a legitimate probability
density defined on A with expectations of functions g(·) written as

E[g(X)|A] =
∫ ∞

−∞
g(x)fX|A(x)dx

In the original probability space, the probability of the event X ∈ B conditioned
on the event X ∈ A is simply

∫
B

fX|A(x)dx. The region of integration can in
fact be restricted to A ∩B, since the density is 0 outside A.

In the continuous case, the law of total probability is

fX(x) =
n∑

i=1

fX|Ai
(x)P (Ai)

where the Ai form a partition of the sample space with P (Ai) > 0 for all
i, 1 ≤ i ≤ n. The corresponding law of total expectation generalized to functions
g(·) is

Eg(X) =
n∑

i=1

E[X|Ai]P (Ai)

Examples.

1. Let X be uniform on [0, 1] and consider the conditional density of X given
the event A that it falls in some subinterval, say [0, a], 0 < a < 1. Then by
the formula given for conditional probabilities, fX|A(x) = 1/a, 0 ≤ x ≤ a
and is 0 otherwise. We note that this new density is also uniform, but
on a smaller interval. This recursive property of the uniform distribution
can be critical in applications and extends easily to general conditioning
intervals or collections of intervals.

2. Let X have the exponential distribution with parameter µ and consider
the conditioning event A to be X > a. The tail 1 − FX(a) = e−µa gives
the probability of A, and so

fX|A(x) =
µe−µx

e−µa
= µe−µ(x−a), x > a
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and hence, conditioned on the event X > a, the rv Y = X − a has the
density

fY (y) = µe−µy, y ≥ 0

which is the same distribution as X. Now if X models a waiting time or
lifetime, so that Y is the time remaining in X, given that X is greater
than a, we discover the remarkable fact that the time remaining is not
a function of a and has the same distribution as X. This may seem
unexpected, but in fact it is exactly what we do expect when we consider
that the exponential distribution is the continuous analog of the geometric
distribution, and when we recall the connection the geometric distribution
has with sequences of Bernoulli trials. To put this in more practical terms,
suppose some device has an exponential lifetime with parameter µ. If the
device is observed at some time and found to be still functioning, then its
remaining lifetime has exactly the same distribution as the one it started
out with. It is obvious why this property of age independence is called
the memoryless property; in the continuous world, it is limited to the
exponential distribution, but no attempt to prove this uniqueness result
is made here. This property is the seed for a stupendous literature on the
modeling and analysis of systems. We will apply it to the Poisson process
later in the course.

¥

2.1.4 Joint distributions

Joint distributions for multiple continuous rv’s are handled just as in the discrete
case, with once again the major differences being the replacement of pmf’s
by pdf’s and sums by integrals. By a natural extension of earlier arguments,
fX,Y (x, y)dxdy estimates the joint probability P (x ≤ X ≤ x + dx, y ≤ Y ≤
y + dy). Joint, conditional, and marginal probabilities are related by

fX,Y (x, y) = fX|Y (x|y)fY (y)

and
fX(x) =

∫ ∞

−∞
fX|Y (x|y)fY (y)dy

with fX|Y (x|y) defined only for those y such that fY (y) > 0.
Independence of rv’s X and Y implies, and is implied by, the same relation

for densities as for pmf’s, i.e., fX,Y (x, y) = fX(x)fY (y) and hence

E[g(X)h(Y )] = Eg(X) · Eh(Y )

Two dimensional densities can be found, as for the one-dimensional case, by
differentiation of cdf’s

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
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where
FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
f(X,Y (s, t),

and the continuous form of the Bayes rule has the obvious form in terms of
densities

fX|Y (x|y) =
fY |X(y|x)fX(x)∫
fY |X(y|t)fX(t)dt

which gives us the desired conditional densities given Y in terms of the con-
ditional densities given X, which, in the context of the inference problem, we
already know.
Examples.

1. We consider the recursive property of the uniform distribution in the set-
ting of two independent uniform random draws X and Y from the inter-
val [0,1]. Their joint density is fX,Y (x, y) = 1 over the unit square. Let
Y > X, so we confine ourselves to the triangle above the diagonal x = y
in the unit square. The conditional density is then

fX,Y |Y >X(x, y|Y > X) =
fX,Y (x, y)
P (Y > X)

=
1

1/2
= 2

The maximum of X, Y has the cumulative distribution FX(x)FY (x) = x2,
as noted before7 and hence the density 2x. The conditional density of
the position of the minimum X given the maximum Y = y is therefore
2/2y = 1/y, 0 ≤ x ≤ y, the uniform distribution, once again.

Pursue this setting further and consider the notion of random interval that
one finds most often in the applied probability literature. The interval
between the two points chosen independently and uniformly at random
from the interval [0, 1] defines a random interval, i.e., a random subinterval
of [0,1]. To find the distribution governing its length L, we make use of the
density function for the maximum Z = max(X, Y ), fZ(z) = 2z, 0 ≤ z ≤ 1.
Write

P (L > x) =
∫ 1

0

P (L > x|Z = z)fZ(z)dz

Let M denote the minimum of the randomly chosen points and observe
that, given the maximum Z = z, the conditional pdf of M is simply the
uniform density 1/z on [0, z] by the earlier argument. Then

P (L > x|Z = z) = P (M ≤ z − x|Z = z) =
∫ z−x

0

dx

z
=

z − x

z
, z > x,

= 0, z ≤ x

7Recall that max(X, Y ) ≤ x if and only if both X ≤ x, and Y ≤ x, so P (max(X, Y ) ≤
x) = P (X ≤ x)P (Y ≤ x) = x2

20



Substituting, one finds

P (L > x) =
∫ 1

x

z − x

z
· 2zdz = 1− 2x + x2

whereupon we arrive at the triangular density

fL(x) =
d

dx
[1− P (L > x)] = 2− 2x,

With the mean EL = 1/3.

A much simpler route to the same result (but one that does not illustrate
joint and conditional probabilities as desired here) identifies the region of
the unit square where L > x, observes that the total area is P (L > x) =
(1− x)2, and differentiates to obtain

fL(x) = − d

dx
P (L > x) = 2(1− x)

Exercise. Find the probability density of the area of a random rectangle
defined by two independent random intervals, one giving the vertical sides
and the other giving the horizontal sides.

2. The problem is to find the probability of the event T that 3 independent
uniform random draws from [0, 1] can be made to form a triangle. A geo-
metric approach identifies the region in 3 space where every point defines
a triangle and then uses volume arguments to determine P (T ). Another
approach is to condition on the maximum of the three draws and find the
probability that the remaining two sum to greater than the maximum.
Suppose the maximum has the value z. The key observation is that the
remaining two values must be distributed as independent samples from
a uniform distribution on [0, z]. Normalize these, i.e., divide them by z,
making them samples of independent rv’s, say X, Y , uniformly distributed
on [0, 1]. Then

P (T ) = P (X + Y > 1)

=
∫ 1

0

P (Y > 1− x|X = x)fX(x)dx

=
∫ 1

0

[1− (1− x)]dx = 1/2

As can be seen the value of the maximum, as a conditioning event, operates
only as a scale factor and does not enter into the analysis once the problem
in terms of the other two rv’s has been rescaled by the maximum.

We have already seen that, to find densities, it is often most convenient to
compute cdf’s (or tails) and then get densities by differentiation. This was illus-
trated earlier for functions of two rv’s by our calculation of the density for the
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length of a random interval. The regions of integration in higher dimensions are
often tricky to identify; where it changes shape is often a key, early observation.

example Compute the density of the difference Z = X − Y , where X,Y are
independent exponentially distributed rv’s with mean 1/λ. This is example 3.28,
page 189 of B&T, but we provide here an alternative solution. In calculating
the cdf or the tail of Z, the shape of the region of integration changes at z = 0
(see Figure 3.25, B&T).

Define z∗ := max(0, z), and note from the figure that, after routine calcula-
tions,

P (X − Y > z) =
∫ ∞

z∗

∫ x−z

0

fX,Y (x, y)dxdy

=
∫ ∞

z∗
λe−λxdx

∫ x−z

0

λe−λydy

= e−λz∗ [1− 1
2
eλ(z−z∗)]

Substitute for z∗ to obtain

P (Z > z) =
{

1
2e−λz z∗ = z
1− 1

2eλz z∗ = 0

whereupon differentiation of −P (Z > z) gives the Laplace density

fZ(z) =
λ

2
e−λ|z|, −∞ < z < ∞

¥
General rv’s have both discrete and continuous components; representations

are less elegant, but rarely do difficulties arise in applications. Queueing theory
underlies the following illustration.

Example: Consider checking in at an airline counter, checking out at a market,
arriving at a car wash, messages arriving at a communications buffer, just to
mention a few of the huge number of such settings. These applications are
characterized by customers either beginning service immediately on arrival with
some positive probability p, or waiting in a queue for a time modeled as a
continuous rv, say W with pdf fW (w), until a server becomes free. Finding p and
the density fW as a function of the parameters of arrival and service processes
is the province of queueing theory; for the moment assume they are given.
Describing W just in terms of densities is unsatisfactory, as there is a positive
probability (mass) concentrated at the value 0, which must be represented by an
infinite spike.8 Matters improve if we focus on cdf’s, since point (i.e., discrete)
probability masses now show up as discontinuities, or jumps, with sizes equal
to the point probability masses. In the present case, the cdf is FW (w) = p +

8The impulse functions of spectral analysis are useful here, but we can do without them).
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(1− p)
∫ w

0
fW (w) with a discontinuity at the origin. Formulation issues aside9,

moments are easily calculated in situations such as this. Here, we have, by the
law of total expectation,

EW k = pE[W k|W = 0] + (1− p)E[W k|W > 0]

= (1− p)
∫ ∞

0

wkfW (w)dw

Mixed distributions are also common in applications. Suppose there is a
discrete rv Z on the integers 1, . . . , n, with the respective probabilities p1, . . . , pn,
and suppose the rv X has the conditional density fXk

(x) of rv Xk given that
Z = k. Then the pdf for X is

fX(x) = p1fX1(x) + · · ·+ pnfXn
(x)

and it is trivial to see that it satisfies the properties of density functions if the
fXi

(·) do.
Example. A general scenario consists of a service facility with multiple servers
having varying rates of service. If there are n servers, the overall expected
service time, using the notation above, can be written

ESn =
n∑

k=1

E[Xk|Z = k]P (Z = k)

=
n∑

k=1

pk

∫ ∞

0

xfXk
(x)dx

2.1.5 Moment generating functions

A standard transform of a sequence a0, a1, . . . is

M(s) =
∑

k≥0

akeks

also called a z-transform if es is replaced by z. If the ak’s form a probability
distribution for an rv X, then the above expression is simply

MX(s) = EesX

In this context, which will be the one to apply hereafter, it is often called a
moment generating function (mgf) for the simple reason that the n-th derivative
of M(s) with respect to s evaluated at s = 0 is the n-th moment.10 This is easy

9One needs a more general version of integration, e.g., the Laplace-Stieltjes integral, which
can accommodate distributions with both discrete and continuous components.

10The Laplace transform of a continuous distribution, viz., Ee−sX , is also commonly found
in the literature; moments are found as here but with an alternation in sign. Use of the
z-transform (with es replaced by z) for discrete rv’s complicates the moment calculations
somewhat; derivatives evaluated at the origin give the so-called factorial moments.
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to see, assuming that expectation and differentiation are interchangeable, since
then

dn

dsn
MX(s) = E[XnesX ]

Note that MX(0) = 1.
Examples.

1. A uniform law on {1, 2, . . . , n} has the mgf

MX(s) =
1
n

es +
1
n

e2s +
1
n

e3s + . . . +
1
n

ens =
es

n

1− ens

1− es

2. A geometric law on the positive integers with parameter p has the mgf

MX(s) =
∑

k≥1

p(1− p)k−1esk =
pes

1− (1− p)es

The mgf for the corresponding geometric law on the nonnegative integers
is also easily calculated and given by

MX(s) =
∑

k≥0

p(1− p)kesk =
p

1− (1− p)es

3. The mgf of a Poisson law with parameter λ is

MX(s) =
∑

k≥0

λk

k!
e−λeks

= e−λ(1−es)
∑

k≥0

(λes)k

k!
e−λes

= e−λ(1−es)

The basic definitions also apply to the mgf’s of continuous rv’s

MX(s) :=
∫ ∞

−∞
esxfX(x)dx

with moments computed as before.
Examples

1. The exponential distribution with parameter µ has the mgf

MX(s) =
∫ ∞

0

µe−µxesxdx =
µ

µ− s
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2. The mgf of the standard normal rv is

MX(s) =
1√
2π

∫ ∞

−∞
e−x2/2esxdx

=
1√
2π

es2/2

∫ ∞

−∞
e−x2/2+sx−s2/2dx

=
1√
2π

es2/2

∫ ∞

−∞
e−(x−s)2/2dx

= es2/2

Exercises.

1. Verify that
P (X = 0) = lim

s→−∞
MX(s)

and apply this result to a couple of the transforms we have computed so
far.

2. Show that, if X = aY + b, then MX(s) = esbMY (sa) and apply this
relation to the mgf for the standard normal to find that the mgf for a
normal rv with mean µ and variance σ2 is given by

MX(s) = esµMY (sσ) = e(σ2s2/2)+µs

3. Let Y be uniformly distributed on [0, 1] and suppose that, given Y = p, the
conditional distribution of X is binomial with parameters n and p. Use
generating functions to show that X has a uniform law on the integers
0, 1, . . . , n.

Owing to the additional background one needs in classical analysis, our treat-
ment of mgf’s will be incomplete in the sense that systematic inversion formulas
will not be covered. Suffice it to say here that, so long as an mgf remains finite
in a neighborhood of the origin, which is a valid assumption for the distributions
covered in these notes, it uniquely specifies a corresponding distribution. On the
other hand, our chief interest is in a relatively small collection of distributions
in this course, and for any of these we can usually infer the distribution from
the shape of the mgf.

Joint mgf’s are also useful and are defined as one would expect. The joint
mgf for the n rv’s X1, . . . , X2 is

M(s1, . . . , sn) = Ees1X1+···+snXn

with the i-th marginal mgf obtainable by setting all but si to 0. Again, it can be
proved under appropriate conditions that a joint mgf corresponds to a unique
joint distribution. The expression for the mgf can be put in the form of an
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expectation of a product, so if the Xi are independent then this expectation is
equal to the product of expectations

M(s1, . . . , sn) = MX1(s1) · · ·MXn
(sn)

Exercise. Let X and Y be independent normal rv’s with the same mean µ
and variance σ2. Work in the transform domain to show that X−Y and X +Y
are independent.

2.1.6 Sums of random variables

We have been exposed so far to sums of rv’s on at least two occasions: The
number of successes in a sequence of Bernoulli trials was represented as a sum of
Bernoulli rv’s, and the waiting time until the k-th success was given by a sum of
geometric rv’s. In each case, the rv’s being summed were i.i.d., i.e., independent
and identical in distribution. The sum S of two independent rv’s X and Y has
a density that can be computed by the convolution of the densities for X and
Y . In particular, a simple conditioning argument yields, in the discrete case,

pS(s) = P (X + Y = s) =
∑

x

pX(x)pY (s− x)

and in the continuous case

fS(s) =
∫ ∞

−∞
fX(x)fY (s− x)dx

These operations, both in the discrete and continuous domains, are called con-
volutions. They can be annoyingly tricky to evaluate, but a routine, “graphical”
approach can be proposed as a guide: reflect fY about the origin and translate
it to obtain fY (s− x), superimpose and multiply fX(x) to obtain the function
fY (s− x)fX(x), and then integrate to obtain the result. Facility with convolu-
tions comes with practice.

Moment generating functions greatly simplify the analysis of sums, as mgf’s
of sums become products of individual mgf’s. As an example whose importance
can not be overestimated, let X1, . . . , Xn be independent. Then

MS(s) = Ees(X1+···+Xn) = Πn
k=1MXk

(s)

so if the Xk are identically distributed as well, we get MS(s) = Mn
X(s) where

X has the distribution common to the Xk.
Examples

1. Let the Xk, 1 ≤ k ≤ n, be i.i.d. Bernoulli rv’s with parameter p. The
mgf of such rv’s is simply 1− p + pes so the mgf of the sum is

MS(s) = (1− p + pes)n

which we know must be the mgf of the binomial distribution with param-
eters p and n.

26



2. Suppose the Xk are independent Poisson rv’s with parameters λk. Then
by our earlier calculation of the mgf for the Poisson law, the mgf of the
sum is

MS(s) = Πn
k=1e

λk(es−1) = eλS(es−1)

where λS = λ1 + · · · + λn, which shows that the sum of independent
Poisson rv’s is Poisson distributed with a parameter equal to the sum of
the individual parameters. This will have strong implications for Poisson
processes that we discuss later.

Exercises.

1. Compute the mgf of the binomial distribution directly.

2. Let S = Z2
1 + · · · + Z2

n be the so-called chi-squared rv with n degrees of
freedom, where the Zk are independent standard normal rv’s. Verify that
MS(s) = (1− 2s)−n/2.

2.1.7 From conditional to unconditional moments

For two rv’s X and Y , the conditional expectation of X given Y = y E[X|Y = y]
is a function of the real number y, which we can make into an identical function
of the conditioning rv Y simply by replacing y by Y ; but in so doing, the
conditional expectation, now denoted by E[X|Y ] has itself become a rv, in
particular a function of the rv Y . We can then consider the expectation of this
rv. However, this leads us quite simply to

E[E[X|Y ]] = EX =
∫ ∞

−∞
E[X|Y = y]fY (y)dy

in the continuous case. With the analogous result that holds in the discrete
case, we have the Law of Iterated Expectation.

So far, the novelty is mainly notational, for we have been using the right-hand
side of the above equation with no essential need for more compact formulas. On
the other hand, getting the unconditional variance V ar(X) from the conditional
variance is, because of nonlinearity, not so simple. As above, we can again define
the rv V ar(X|Y ) from

V ar(X|Y = y) = E[(X − E[X|Y = y])2|Y = y]

If we add (E[X|Y )2 (the square of an rv) to V ar(X|Y ) we obtain the conditional
second moment given Y : E[X2|Y ]. But then, to get V ar(X), we subtract the
square of the expectation of the conditional mean and take another expectation.
Write this out and simplify as follows:

V ar(X) = E[E[X2|Y ]]− (E[E[X|Y ]])2

= E[V ar(X|Y ) + (E[X|Y ])2]− (E[E[X|Y ]])2

= E[V ar(X|Y )] + V ar(E[X|Y ])
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This last relation is called the Law of Total Variance or simply the total vari-
ance formula, and in its expression we see a concrete, useful illustration of the
expectation E[X|Y ] as an rv.

An important example is provided by randomized sums of i.i.d. rv’s, i.e., the
case where the number, N , of variables summed is also random. Let

Y = X1 + · · ·+ XN

where the Xi’s are i.i.d. with mean and variance µ and σ2, and where N is a
rv independent of the Xi’s. Clearly, we have E[Y |N ] = Nµ and so, by taking
the expected value

EY = E[E[Y |N ]] = E[µN ] = µEN

Further, by the independence of the Xi’s, V ar(Y |N) = Nσ2 and so, by the
total variance formula,

V ar(Y ) = E[V ar(Y |N)] + V ar(E[Y |N ])
= E[Nσ2] + V ar(Nµ) = ENσ2 + V ar(N)µ2

Example. The sum, Y , of a geometrically distributed number, N, of indepen-
dent, exponentially distributed rv’s, Xi, gives an example that arises in many
situations. Let p and λ be the parameters of the two respective distributions,and
observe that

E[Y ] = ENEX =
1
p
· 1
λ

and

V ar(Y ) = EN · V ar(X) + (EX)2V ar(N) =
1
p
· 1
λ2

+
1
λ2
· 1− p

p2
=

1
λ2p2

¥
In terms of mgf’s of randomized sums, we have, with the earlier notation,

MY (s) = EesY = E[E[esY |N ]] = E[(MX(s))N ] =
∑

n≥0

(MX(s))npN (n),

so replacing es in the defining formula for MN (s) by MX(s) gives the mgf for
the randomized sum.

Example (continued). In the preceding example,

MX(s) =
λ

λ− s
, MN (s) =

pes

1− (1− p)es
.

and so, after routine calculation,

MY (s) =
pMX(s)

1− (1− p)MX(s)
=

pλ

pλ− s

Thus, while a fixed sum of i.i.d. exponentials is not exponential, a geometrically
distributed number of such exponentials is, and its parameter is the product of
the parameters of the geometric and exponential distributions.
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2.1.8 Covariance, Correlation

We have already been exposed to calculations of pdf’s and moments of products
of rv’s, say X and Y , in the context of derived distributions. But the topic is
of fundamental interest as a means of measuring the interaction or relationship
between two rv’s. The basic measure is the covariance which is the expected
value of the product of the zero-mean, or centered versions of the rv’s:

Cov(X, Y ) = E[(X − EX)(Y − EY )]

or, as is easily verified,

Cov(X, Y ) = E[XY ]− EXEY

If this has the value 0, which will clearly be the case if X and Y are independent,
then X and Y are said to be uncorrelated. While the concepts of independence
and correlation are intimately related in practice, examples can be contrived to
show that a correlation of 0 does not imply independence. One such example is
a uniform pmf applied to the sample points (1,0), (0,1), (-1,0), (0,-1) for rv’s X
and Y . It is easy to see by inspection that EXY = EX = EY = 0 and hence
Cov(X, Y ) = 0. But X and Y are not independent: when one has a nonzero
value the other has value 0.

The covariance arises naturally in computing the variance of a sum X +Y of
rv’s. One obtains, by expanding the square of the sum and taking expectations,

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y )

Commonly, in studying the relationship between two rv’s, a further normal-
ization (beyond centering) is introduced, one that we have already encountered.
We normalize the rv’s by their standard deviations, which then gives rv’s with
unit variance as well as 0 means. In so doing, we define the correlation co-
efficient of X and Y , or equivalently, the covariance of the normalized rv’s
X̂ = (X − EX)/σX and Ŷ = (Y − EY )/σY ,

ρ(X, Y ) = Cov(X̂, Ŷ ) =
Cov(X,Y )

σXσY

It is easy to see that, with the new normalization, ρ is now limited to values in
the interval [−1, 1]. A proof starts with the observation that

0 ≤ V ar(X̂ + Ŷ ) = V ar(X̂) + V ar(Ŷ ) + 2Cov(X̂, Ŷ ) = 2[1 + ρ(X, Y )]

which implies that ρ ≥ −1. Similar manipulations with the inequality 0 ≤
V ar(X̂ + Ŷ ) prove that ρ ≤ 1.

The correlation coefficient measures the extent to which two rv’s ”track”
one another, or somewhat more precisely, the extent to which they are linearly
related. For, if X and Y are linearly related, e.g., X = aY + b, then one finds
that ρ is +1 or −1 according as a > 0 or a < 0. We leave a proof of this as an
exercise.
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Scatterplots of samples of two rv’s are standard graphics for suggesting the
presence of correlation. For example, suppose we have two measures, each say
integers from 0 and 100, ranking car driving skill of people and the condition of
the cars they drive. For some sample of drivers, mark a point (place a dot) at
the x, y coordinates (driver skill, car condition) for each driver. In the ”cloud”
of points obtained, one will surely see some positive correlation in the sense
that the points plotted are approximated well by a straight line; points will
deviate somewhat from a linear fit, but not by very much. In these cases, |ρ|
will be relatively close to 1. Lack of correlation is perceived in such plots as an
apparently random scattering of points.

3 Limit Theorems

Let X1, X2, . . . be independent samples from a given distribution FX(x) (in
the same sense that throws of a die give independent samples from a uniform
distribution on {1, 2, 3, 4, 5, 6}). Suppose FX has both a mean and variance, and
denote them by µ and σ2. The laws of large numbers both imply that, for any
given ε > 0, the probability that the sample mean (X1 + · · · + Xn)/n deviates
from µ by more than ε tends to 0. That is,

P

(
X1 + · · ·+ Xn

n
− µ > ε

)
→ 0

as n → ∞. Very roughly, as the number of samples grows the weak law, as
above, allows for occasional large deviations, but the stronger version does not.
The strong law states that, as n →∞, (X1 + · · ·+ Xn)/n → µ with probability
one.11 We give a fundamental application of the strong law by defining, for a
given sequence of independent trials of some experiment, the indicator rv’s Xi

which take the value 1 if a given event A occurs and the value 0 otherwise. By
the strong law of large numbers (X1 + · · · + Xn)/n → EX = P (A), and hence
the limiting proportion of time that event A occurs is just P (A), which confirms
our initial motivation for the formal concept of probability.

The weak law is easy to prove and relies on two inequalities that are inter-
esting and useful in their own right. The first is Markov’s inequality:

If X is a nonnegative rv, then for any a, P (X ≥ a) ≤ EX/a.

To prove this assertion, define the indicator function IA(X) = 1, if A = {X ≥
a} holds, and = 0 otherwise, and note that aIA(X) ≤ X, so EIA(X) ≤ EX/a.
But since EIA(X) = P (X ≥ a), we have our desired result.

We can be more precise if X has a known variance σ2, as shown by Cheby-
shev’s inequality:

11Roughly, for given ε, this means that in an infinite set of sufficiently long sample sequences,
there will be at most a finite number of exceptions to the assertion that (X1 + · · ·+Xn/n)−µ
≤ ε.
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Let X be an rv with mean µ and variance σ2. Then for any x > 0, the
probability of deviating from the mean by at least x is bounded by

P (|X − µ| ≥ x) ≤ σ2/x2.

To prove the bound, use the Markov inequality with a = x2 and write, since
(X − µ)2 is nonnegative,

P (|X − µ| ≥ x) = P ((X − µ)2 ≥ x2) ≤ E(X − µ)2

x2
=

σ2

x2

These bounds can be quite useful when probabilities are not known precisely but
the first and/or second moment is. But because of their generality (weakness of
the assumptions), the bounds tend to be rather coarse.

We now prove the weak law given earlier under the assumption that the rv’s
have the variance σ2. Since

E
(

X1 + · · ·+ Xn

n

)
= µ, V ar

(
X1 + · · ·+ Xn

n

)
=

σ2

n

then by Chebyshev’s inequality

P

(∣∣∣∣
X1 + · · ·+ Xn

n
− µ

∣∣∣∣ ≥ ε

)
≤ σ2

nε2

and the weak law follows.
In fact, the existence of a second moment is not needed for the laws of large

numbers, but a proof of this fact is beyond our scope.
The next limit law, the central limit theorem, gives a much stronger assertion

if in fact a variance does exist; in particular, it gives estimates of the probabilities
of deviations from the mean. The theorem is stated in terms of the standardized,
i.e., centered and normalized-variance, version of Sn = Xi + · · ·+ Xn, which is
given by

Ŝn =
(Sn − nµ)√

nσ2

which clearly has mean 0 and variance 1. In these terms, the central limit
theorem states that, for any fixed x

P (Ŝn ≤ x) → Φ(x)

as n →∞.
Before proving the mgf version of this theorem, we give a couple of examples

and make a few comments.

Examples. Recall that, using mgf’s, we saw that a sum of independent Poisson
rv’s was Poisson distributed. It follows from the CLT, therefore, that under an
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appropriate normalization, the standard normal can be exhibited as a limit of
the Poisson distribution. Similarly, we introduced Pascal’s distribution as the
pmf of the waiting time for the n-th success in a sequence of Bernoulli trials.
Since waiting times were sums of independent geometric random variables, it
follows that the normal law can be used as a large-n approximation for Pascal’s
law. ¥

In ”unnormalized” terms, the CLT says that a normal rv with mean nµ
and variance nσ2 is a good approximation of the distribution of Sn for n large
enough. It is instructive to test experimentally how big n has to be before the
normal gives a good approximation of the sum Sn. You can do this numerically
quite easily using Matlab, or by simulations when exact results are infeasible,
taking as examples a uniform distribution and an exponential distribution for
the Xi’s. Most people are surprised at how fast the convergence to the normal
law takes place, i.e., how small n can be and still have a good approximation,
even when dealing with distributions that are arguably not well served by the
CLT. An even better feel can be gotten by graphing the distribution of Sn

superimposed on the appropriate normal approximation.
To prove the mgf version of the theorem, we show that the mgf of Ŝn con-

verges to the mgf of the standard normal, es2/2. For simplicity, but no loss in gen-
erality, we assume that the Xi have mean 0 and variance 1 so that Ŝn = Sn/

√
n

has mean 0 and variance n. Expand the mgf for Xi as a power series in s,
assuming it’s well behaved in a neighborhood of the origin, to get

MX(s) = α0 + α1s + α2s
2 + · · ·

and so, after raising to the n-th power and taking the logarithm, we can write
for MŜn

(s) = EesSn/
√

n = MSn(s/
√

n)

ln MŜn
(s) = n ln(α0 + α1

s√
n

+ α2
s2

n
+ O(

s3

n3/2
))

where, in this instance, the notation O(g(x)) just refers to a function propor-
tional to g(x), and so grows no faster (and decreases no slower) than g(x). By
the fact that MSn(0) = 1, M ′

Sn
(0) = ESn = 0, and M ′′(0) = ES2

n = V ar(Sn) =
nV ar(X), we get α0 = 1, α1 = 0, and α2 = 1/(2n), and hence

ln MŜn
(s) = ln(1 +

s2

2n
+ O(

s3

n3/2
))

Expanding the logarithm as we did before (see p. 14), we get lnMŜn
(s) ∼ s2/2

as n →∞, and hence

lim
n→∞

MŜn
(s) = es2/2

which is the mgf for the standard normal, as claimed.
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Example. Electra, a circuits person, collects n independent measurements of
the current, Xi, 1 ≤ i ≤ n, at the output of some circuit. Electra knows that
Xi’s have an error given by a variance of 4 milliamps about the mean, but she
doesn’t know the mean, say d, which she will estimate by taking the empirical
mean of the n measurements. How large should n be to be 95% sure that she
has the right mean to within ±.5 milliamps?

The sum of the measurements has mean nd and standard deviation
√

4n, so
the rv

Zn =
∑n

i=1 Xi − nd

2
√

n

is approximately a standard normal. Electra wants a value of n such that

P

(
−.5 ≤

∑n
i=1 Xi

n
≤ .5

)
≥ .95

or equivalently, a value of n such that Zn falls in the interval [−.5
√

n/2, .5
√

n/2]
with probability at least .95. Using the symmetry of the normal distribution,
Electra must compute an n such that

Φ(
√

n/4)− Φ(−√n/4) = 2Φ(
√

n/4)− 1 ≥ .95

or Φ(
√

n/4) ≥ .975. From tables for the standard normal, Electra finds that√
n/4 ≥ 1.96 or n ≥ 62 will suffice.

Exercise. For large x an excellent approximation to the tail of the standard
normal is12

1− Φ(x) =
∫ ∞

x

e−y2/2dy√
2π

≈ e−x2/2

x
√

2π

Use this estimate to answer the following question. 1,359,672 boys and 1,285,088
girls were born in Sweden between 1867 and 1890. Is this assertion consistent
with (reasonably probable under) the assumption that both sexes are equally
likely?

12To prove that the estimate is an upper bound, verify by differentiation (using Leibniz’s
rule in the case of the integral) that

e−x2/2

x
√

2π
=

∫ ∞

x
e−y2/2

{
1 +

1

y2

}
dy

then notice that the integrand is larger than the integrand in the integral defining 1− Φ(x).
To prove a corresponding lower bound proceed similarly to show that

e−x2/2

√
2π

{
1

x
− 1

x3

}
=

∫ ∞

x

e−y2/2

√
2π

{
1− 3

y4

}
dy
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4 Random processes

4.1 Bernoulli and Poisson processes

We have had much to say about sequences of Bernoulli trials. These can be
thought of as Bernoulli processes in discrete time by the simple device of par-
titioning time into units or slots, say of duration δ, with successive trials being
made in successive slots. With applications in mind, we also change terminol-
ogy: A success at the n-th trial becomes an ‘arrival’ occurring at time n (the
n-th time slot), and a failure is a null event (nothing happens). By a limit
process that we’ve already illustrated, we can convert the Bernoulli process in
discrete time into a Poisson process in continuous time. The properties and
statistics of the discrete time process all have their parallels in the continuous
process; these parallels are listed below as a means of introducing the Poisson
process.

1. The times between arrivals in discrete time are geometric whereas they are
exponential in continuous time. Of course, an arrival of the former process
requires a time slot for its occurrence, but it becomes an instantaneous
event in the continuous process. Just as the independent, geometrically
distributed times between successes can be used as a definition of the
Bernoulli process, so can the independent, exponentially distributed times
between arrivals define the Poisson process.

2. The probability of a Poisson arrival in [t, t + ∆t] is λ∆t + o(∆t), where
λ is a rate parameter of the process corresponding to p in the Bernoulli
process, and where o(∆t) means “of smaller order of magnitude than ∆t”
(i.e., if g(∆t) = o(∆t) then g(∆t)/∆t → 0 as ∆t → 0). This probability is
independent of the events in all intervals disjoint from [t, t+∆t]. Note that
this property replicates the Bernoulli trial mechanism at the differential
level with an (asymptotically negligible) error term that tends to 0 at a
faster rate in the continuous limit than does the size ∆t of the differential
interval.

3. The number of arrivals in time nδ has a binomial distribution with mean
pn for the Bernoulli process and a Poisson distribution with mean λt = np
in the corresponding Poisson process. The latter is obtained in the limit
n → ∞, δ → 0, with nδ fixed at t and p → 0 with p/δ held fixed at λ.
The numbers of arrivals in disjoint intervals are independent. Since we
can take the disjoint intervals to be adjacent, this gives a new proof that
the sum of Poisson rv’s is also a Poisson rv.

We should be able to get this result for the Poisson process from the
preceding property as well, in which we work directly with the continuous
process. This goes as follows. Let N(t), often called a counting process,
denote the number of arrivals in [0, t]. Write, for i ≥ 1,

P (N(t + ∆t) = i) = P (N(t) = i− 1)λ∆t + P (N(t) = i)(1− λ∆t) + o(∆t)
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and for i = 0 just omit the first term on the right-hand side. Now bring
P (N(t) = i) over to the left-hand side and divide through by ∆t to get,
for i ≥ 1,

P (N(t + ∆t) = i)− P (N(t) = i)
∆t

= λP (N(t) = i−1)−λP (N(t) = i)+
o(∆t)
∆t

Let pi(t) := P (N(t) = i) and take the limit ∆t → 0 to get the differential
equation

p′i(t) = λpi−1(t)− λpi(t), i ≥ 1,

with p′0(t) = −λp0(t) which, by inspection, has the solution p0(t) = e−λt.
It is easy to see that the differential equation is satisfied by the Poisson
pmf

pi(t) =
(λt)i

i!
e−λt

which is what we had set out to verify.13

Property 1 is also readily seen to be implied by this property. For, the
probability of no arrivals in time t since the last arrival is e−λt accord-
ing to the Poisson law. But this is just the tail of the interarrival-time
distribution, which must then be the exponential.

4. Both processes exhibit the memoryless property: at any time t, the future
of the process evolves independently of the past, and in particular, the
time already transpired waiting for the next arrival. Formally, we proved
earlier that if X denotes the interarrival time in progress and λ is the
arrival rate, then, independently of t, P (X − t ≤ x|X > t) = 1 − e−λx,
which was the distribution looking forward from the last arrival t time
units earlier.

5. In the discrete model we posed the question: Given that a single arrival
took place within a given sequence of n time slots, what is the conditional
pmf of the slot in which it occurred? The answer was the uniform law
1/n, and we get the same answer for the analogous question in continuous
time: Given the event A that exactly one arrival occurred in an interval of
duration τ , what is the conditional density of the time T in that interval
when it took place? We have P (A) = λτe−λτ , and the probability of
an arrival in [t, t + dt] and nowhere else in the interval of duration τ is
λdte−λτ , so the density is again given by a uniform density,

fT |A(t|A)dt =
λdte−λτ

λτe−λτ
=

dt

τ

More generally, given that there are exactly k arrivals in the interval of
duration τ , their conditional distribution is that of k independent uniform

13To solve the differential equation directly, take the z-transform and then solve, by a simple
integration, the resulting partial differential equation to get the z-transform of the Poisson
distribution.
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random draws from the interval. This is easily proved by induction on k
using the properties of the Poisson process.

6. The waiting time W for the k-th arrival (success) in the Bernoulli process
gave rise to the Pascal distribution (p. 10), and in the Poisson process it
gives rise to the Erlang-k distribution as follows. The probability that the
k-th arrival takes place in [t, t + dt] is λdt (plus lower order terms) times
the probability that k−1 arrivals took place in [0, t], an independent event,
as we have stated above. Thus, the pdf for W is as given in

fW (t)dt = λdt · (λt)k−1

(k − 1)!
e−λt =

λktk−1

(k − 1)!
e−λtdt

7. We have yet to speak of the merging and splitting of processes, but as these
concepts are entirely analogous in the Bernoulli and Poisson processes,
now is a good time to describe them. Suppose that, for each arrival in
a Bernoulli process, we toss a biased coin (q is the probability of heads)
and if it comes up heads we reject the arrival. The resulting process is
still Bernoulli, as is easily seen, but with a new parameter p(1 − q); at
each slot the probability of an arrival is p(1 − q) independently of the
past. Similarly, the process of rejected arrivals is Bernoulli, but with a
parameter pq.

We do the same thing with arrivals in a Poisson process, tossing a coin
to determine which of two split processes is to receive an arrival in the
original process. It is easily proved that the two split processes are inde-
pendent and Poisson, one with arrival rate λ(1 − q) and the other with
arrival rate λq. (Use the fact that the sum of a geometrically distributed
number of exponentials is exponential.)
Exercise Describe the split processes when we transfer every k-th Pois-
son arrival to a new process. This gives us two arrival processes, one at
rate λ(k − 1)/k and one at rate λ/k. Are the new processes Poisson pro-
cesses? Explain. ¥

We merge two independent Bernoulli processes with parameters p and q
into a single Bernoulli process with parameter 1−(1−p)(1−q) by creating
an arrival in a slot of the new process whenever there is an arrival in
the same slot of one or both of the merging processes. The merging of
independent Poisson processes at rates λ1, λ2 is simply their superposition,
which, as is easily proved, is a Poisson process at rate λ1 + λ2.

4.2 Markov Chains

Recall the rv Sn representing the sum of i.i.d. rv’s with values in {−1, 1}
in the random walk of midterm 2, where Sn was the position of a particle,
say, after step n. The sequence {Sn, n ≥ 1} is a widely applicable special
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case of discrete-time Markov chains. Technically, the term ‘chain’ means
nothing more than ‘sequence.’ The term ‘discrete-time’ refers to step-by-
step evolution as in random walks or Bernoulli trials. The rv Sn is called
a state in the parlance of MC’s and the MC is said to be in state i at time
n if Sn = i. At each step of the MC, it moves from a state Sn to a new
state Sn+1 obtained in the random-walk example simply by adding to the
current state the value of the next step drawn from {−1, 1}. These MC’s
are infinite-state in the sense that there is no bound on their values.

The general case of Markov chains {Xn, n ≥ 0} of interest here is a se-
quence of random variables (states) with integer values, in which one-step
transitions from any state to any other state are allowed. Each transition
Xn = i → Xn+1 = j has a transition probability pi,j , which is independent
of n and all Xj , j < n. The essential simplification of Bernoulli-type
processes relative to MC’s, is that in the former the steps are i.i.d. rv’s
independent of the states of the process, and in the latter the steps can
depend on the current state. However, we emphasize the above Markov
property: the step made by an MC in any given state Xn depends only on
Xn, and not on the history of the process leading up to Xn. Our initial
focus is on finite MC’s, i.e., those with a finite set S of m states which we
usually take to be the integers 1, . . . ,m. Generating sequences of states,
which we refer to as paths, is completely defined by an initial state, which
is drawn from a given distribution, and an m × m one-step transition
matrix P := {pi,j}, where

pi,j = P (Xn+1 = j|Xn = i), i, j ∈ S, n ≥ 0,

independently of all prior state transitions. We allow pi,j = 0 in which
case transitions are never made from state i to state j, and pi,j = 1, in
which case state j always follows state i. If pi,i = 1, then if the MC ever
gets into state i, it stays (is absorbed) there. Every row in P must sum to
1,

∑
j∈S pi,j = 1, since from any given state a transition to some state is

obligatory, even if it is back to the given state itself.

The transition matrix P and the paths that can be generated from it are
conveniently represented in the form of a directed graph, say G. Draw a
node for each state in P and label it with the state it represents. Then
draw a directed edge from node i to node j (i.e., an edge headed by an
arrow pointing towards j) if and only if pi,j > 0 in P. Following sequences
of directed edges in G traces the possible paths in the MC.

Example. Consider the bits received at a digital receiver, one per time
unit, with 1’s and 0’s equally likely. The current state is 1 meaning the
last bit transmission was successful and delivered a 0, or 2 meaning that
the last bit was transmitted successfully and was a 1, or 3 meaning a bit
was delivered in error in a transition starting in state 1, or 4 meaning
that a bit was delivered in error in a transition starting in state 2. The
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probability of a bit being received in error is ε, and in that event, after a
delay of one time unit, the bit is resent with the system in the same state
it was in before the error occurred. Model this process by the transition
matrix 



1−ε
2

1−ε
2 ε 0

1−ε
2

1−ε
2 0 ε

1 0 0 0
0 1 0 0




¥
The conditional probability that the MC moves along the path i1, . . . in
given that it starts in state i0, is, by the Markov property, simply the
product of the associated transition probabilities

P (X1 = i1, X2 = i2, . . . , Xn = in|X0 = i0) = pi0,i1pi1,i2 · · · pin−1,n,

consistent with the fact that an MC is completely defined by the distri-
bution from which the initial state is drawn and the transition matrix P.
It is of obvious interest to know the distribution of the state of the MC
after it has made n steps, and this is available from the n-step transition
probabilities p

(n)
i,j := P (Xn = j|X0 = i). The following recurrence14 is

easily established for all i, j

(∗) p
(n)
i,j =

∑m
k=1 p

(n−1)
i,k pk,j , n > 1

with p
(1)
i,j ≡ pi,j .

States can be characterized in various ways determined by when and how
often they can be entered and exited. For the moment, let us suppose
that all states in S are communicating, i.e., each state can be reached
from every other state with positive probability. We do this so that we
can quickly come to the fundamental questions of long-term behavior,
where n is large in (*). The communicating states are recurrent in the
sense that they will recur infinitely often and have finite expected times
between successive recurrences. We need one other concept.

The state space S, and hence the MC, can be periodic in the sense that
it moves cyclically from one subset of S to another in a fixed sequence.
Specifically, S can be partitioned into subsets A1, . . . , Ak such that each
one-step transition of the MC in S is, for some `, 1 ≤ ` < k, a transi-
tion from a state in A` to a state in A`+1, or a transition from a state

14The recurrence specializes the Chapman-Kolmogorov characterization of Markov chains,
with pi,j(m, n) := P (Xn = j|Xm = i),

pi,j(m, n) =
m∑

k=1

pi,k(m, r)pk,j(r, n)

for any r satisfying m < r < n.
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in Ak to a state in A1. If no such partition exists for S, then S and the
MC are aperiodic. It is readily proved that S is aperiodic if there exists
some state s ∈ S and some step count n ≥ 1 such that every state in
S can reach s in n steps. In the other direction, one can prove with-
out difficulty that if S is aperiodic then there exists an n such that in n
steps a transition can be made from any state in S to any other state in S.

We have, in a simplified form, the following fundamental result of Markov
chain theory.

If S is a finite set of communicating states, and is aperiodic, then the
n-step transition probabilities converge to a distribution

lim
n→∞

p
(n)
i,j = πj > 0, forall j

which, as can be seen, is independent of the initial state i, and is the
unique solution to the limit of the recurrence in (*)

πj =
m∑

k=1

pk,jπk

with
m∑

k=1

πk = 1

Such MC’s (and their states) are said to be ergodic and their distributions
{πj} are variously called stationary, invariant (under P), or steady-state
distributions.

In general, not all recurrent states of S need communicate; rather they
can be broken down into a number of recurrence classes: If A is a subset
of S such that (a) all states in A communicate with each other, and (b) no
state outside A is reachable from a state in A, then A is a recurrent class
of states; A is said to be a closed set. There may be a positive probability
of never entering the class A, but once entered, the MC remains there.
In that case, every state in A will be entered infinitely often, and the
recurrence times will have finite means.

A transient state is not recurrent: although there is no bound in general
on the number of times it can be visited in paths of a MC, the expected
number of visits is finite. An absorbing state j is a recurrent class con-
taining just the one state j. An MC must have at least one recurrent
class; it may or may not have transient states. The MC is irreducible if
it has exactly one recurrent class. Note that aperiodicity specializes to
recurrence classes: some classes may be aperiodic and some not. In the
fundamental result of finite Markov chains above, we could have allowed
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up to m− 1 transient states (a nonempty recurrent class is needed), and
the result would have been the same except that for the stipulation that
p
(n)
i,j → 0, and hence πj = 0, for transient states Sj . Finally, if in the fun-

damental result, ‘aperiodic’ had been replaced by ‘periodic’, a stationary
distribution {π} solving the balance equations would still have existed,
even though periodicities prevent the convergence of the state probabil-
ities at time n; the πj may still be interpreted as the fractions of time
spent in states j.

Convergence rates are of great importance as they measure the approxi-
mation in models of stationary behavior. For finite MC’s convergence is
exponentially (more precisely geometrically) fast in the sense that there
exists a ρ < 1 such that |p(n)

i,j − πj | = O(ρn), where the hidden constants
do not depend on i, j. Thus, these approximations are typically very good.
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