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Summary: In addition to conventional cepstra, we model the covariance of chroma (melodic/harmonic) 
 features and gain a small improvement in a 20-way pop music artist identification. 
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• “Classic” approaches to music audio classification model the 
covariance of spectral features (e.g. MFCCs) as distributions [1] 
or discriminatively [2].
These appear to work by reflecting the instrumentation, which 
correlates well with genre or band [3].

• Chroma features [4] attempt to represent the pitch content (melody 
and harmony) while minimizing the influence of instrumentation.

• We investigate using the covariance of chroma features as a 
basis for music classification by artist.  Although weak on their own, 
chroma features can improve classification when combined with 
spectral features

• This suggests that artists have particular harmonic combinations 
or motifs that can be automatically recognized. 

• Covariance of single beat-chroma 
vectors carries some information 
about artist, beyond that captured by 
MFCCs.  This could relate to e.g. an 
artist’s preferred chords.

• Used alone, chroma features do quite 
well on a few artists (tori_amos, 
metallica) but learn almost nothing 
about others (madonna, beatles).

• Our best performance came from a 
simple weighted sum of likelihoods 
from separate MFCC and Chroma 
models. Differences were small, but 
gains were on different artists than 
those classified best by Chroma alone 
(beatles, led_zeppelin).

• MFCC-based classification is 
much more accurate (56%) 
than using Chroma features 
(33% at best), but 
combining the two does 
give further gains (to 59% 
correct; McNemar p < .001).

• A single, full-covariance 
Gaussian is adequate to model the MFCC data, but 
Chroma data need a 64-mix GMM.

• Key normalization (ChromaKN) is important for Chroma features.
• Stacking Chroma features from up to 4 adjacent beat-times 

(T win = 4) helps a little. 

• 1413 tracks, from 120 albums (20 artists x 6 albums) [5]
• Contemporary pop music drawn from uspop2002 [6] and others
• Studio albums, chosen for chronological & stylistic consistency
• MFCCs, Chroma features, etc. available for download at
http://labrosa.ee.columbia.edu/projects/artistid/

• Similar melodic/harmonic gestures occur ‘relative’ to the different 
keys of individual songs.

• Key normalization attempts to transpose (rotate) the chroma 
features to a canonical key prior 
to modeling.

• We do this by:
- build a chroma covariance 

matrix from all songs
- transpose each song to 

maximize likelihood under 
global model

- re-estimate global model from 
transposed songs and repeat. 
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Feature Model T win Acc Exec time
MFCC20 FullCov 1 56% 127 s
MFCC20 64 GMM 1 56% 563 s
Chroma FullCov 1 14% 21 s
Chroma FullCov 4 20% 57 s
Chroma 64GMM 1 25% 337 s
Chroma 64GMM 4 29% 1060 s
ChromaKN FullCov 1 23% 70 s
ChromaKN FullCov 4 28% 197 s
ChromaKN 64GMM 1 32% 516 s
ChromaKN 64GMM 4 33% 1238 s

MFCC + Chroma fusion 59%


