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@ Acoustic/Auditory Scene Analysis
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Scene analysis is sound understanding

- understanding = abstraction

Applications
robust interfaces
robots
indexing/retrieval
prostheses
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The Mixture Problem

“Imagine two narrow channels dug up from the edge of a
lake, with handkerchiefs stretched across each one.
Looking only at the motion of the handkerchiefs, you are
to answer questions such as: How many boats are there
on the lake and where are they?” (after Bregman’90)

- Objects (sources), not waveforms
- .. and only their attributes “of interest”

- Seems highly underconstrained

- But: Hearing is ecologically grounded
- reflects natural scene properties = constraints

- subjective, not absolute
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The Signal Separation Perspective

Search for a representation / parameterization
in which sources become separate

Inverse filter & cancel (ICA, beamforming)
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The Pattern Recognition Perspective

- Bayes Rule:

Event / Model /7,
Evidence / observation x:
M) -
p(x)

- Trained signal model p(x | M)
- fit to training examples of x under
- uncertainty from observation noise / ignorance

« Uncertainty in Pr(M | x)
- from unambiguous separation ...
- ... to hopeful guess

« Structure of p(x | M) -
- the possibilities under consideration
- constraints on solution
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Separation vs. Recognition

- Final goal is scene abstraction:
Do we need signal separation?

- separate-then-recognize is a nice approach
— if you can separate

- classification is often still possible
when separation is hopeless

- Classification/Recognition
- can express ambiguous answers

- still applicable when data is missing
(based on )

- “Perceiving is more than recognizing”
- identify class
+ extract parameters of instance
.. for description of scene
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Constraints in Scene Analysis

« Learned constraints are central to human
speech recognition

- click-language example
- foreign-language cocktail party
- ... hot just for speech

- Computational systems need similar
‘constraints’ on real-world sounds

hand-specify rules?
or: learn from examples?
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Outline

0 Constraints and Scene Analysis

@) Model-Based Organization
- Missing-Data Recognition
- Comparing Segregation Masks
- Multi-Source Decoding

e Evaluation
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(2] Model-based Organization:

Sound Fragment Decoding
(Cooke et al. '01; Barker, Cooke & Ellis)

« Signal separation is too hard!
Instead:

- segregate features into partially-observed
sources

- then classify

« Made possible by missing data recognition
- Iintegrate over uncertainty in observations

- Goal:
Relate clean speech models P(XIM)
to speech-plus-noise mixture observations

- ..and make it tractable
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Missing Data Recognition

-  Speech models p(xim) are multidimensional...
- i.e. means, variances for every freq. channel
- need values for all dimensions to get p(*)

- But: can evaluate over a x

subset of dimensions x; P Qo)
p(Xk‘m) = Jp(xk’ Xu‘m)dxu Yt

) Hgnc_e, .\ plaisy) S ple)

missing data recognition:

Present data mask P(x|q) =

L = P(x;|q)

- ™ - P(x2]q)
5 = TPt
S - P(xg | q)
£ ™ TPGsdgr”
© - P(xg | 9)

time [J
- hard part is finding the mask (segregation)
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Comparing Segregation Masks

« Standard classification chooses between
models M to match source features X

M* = argmax P(M|X) = argmax P(X|M) - PM)

P

« Mixtures: observed features Y, segregation S,
all related by P( X | V.5) :

A
Observation

Y()

Source
X(f)

frea
- Joint classification of model and segregation:

P(X|Y,S
P(M,S|Y) = P(M)[P(X|M) - (P(|X) e P(S|Y)

( P(X) no longer constant )
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Calculating fragment matches

P(X|Y,S)
P(X)

P(M,S|Y) = P(M)_[P(X|M)- dX - P(S|V)

«  P(XIM) - the clean-signal feature model
- PXIV.S)/P(X)-1s X ‘visible’ given segregation?

- Integration collapses some bands...

- P(SlY) - segregation inferred from observation
- just assume uniform, find S for most likely M
- or:use extra information in Y to distinguish S’s...

Result:

- probabilistically-correct relation between
clean-source models P(XIM)
and inferred, recognized source + segregation
P(M,SIY)
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Using CASA features

- P(SIY) links acoustic information to segregation
- is this segregation worth considering?
- how likely is it?

« Opening for CASA-style local features
- periodicity/harmonicity:
frequency bands belong together

- onset/continuity:
time-frequency region must be whole

- = .
"‘h; H
= Li

I S

Frequency Proximity Common Onset  Harmonicity
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Fragment decoding

- Limiting S to whole fragments
makes hypothesis search tractable:

Fragmentsm
Hypotheses
. /—0— w7
N
time
T T2 T3 T4 T5 T6

- choice of fragments reflects P(S1Y) - P(XIM)
i.e. best combination of segregation
and match to speech models

+ Merging hypotheses limits space demands
- .. but erases specific history
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Speech fragment decoder results

- Simple P(51Y) model forces contiguous regions
to stay together

- big efficiency gain when searching S space
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- Clean-models-based recognition
rivals trained-in-noise recognition
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Multi-Source Decoding

- Match multiple models at once?

0-0-0-0-0-0-0-0-0~ M;
Y(1) S>(1)

_

- disjoint subsets of cells for each source
- each model match P(M,IS..Y) is independent

S1(0)
O~O-0-O~O-0-0-0O-0~ M

- masks are mutually dependent: P(5,5,Y)
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Model-Based Organization:
Summary

* Results constrained by source model P(XIM)
- single, ideal clean-signal model

« Local signal cues introduced via P(S1Y)
- limited subset of segregations are considered
- opening for bottom-up CASA cues

« Output is classification M*
- could do TF-mask filtering, but not the point
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Outline

@ Constraints and Scene Analysis
€©) Model-Based Organization

Q Evaluation
- Tasks
- Domains
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©

Lab

Evaluation: Tasks

Evaluation standards
make research fundable

- sponsors want tangible progress

The DARPA / ASR experience

- pro: able to judge relative merits

- con: extinction of 2nd-best’ techniques
neglected aspects e.g. source separation

Minimize pathologies by:
- defining a ‘real’ task - get something useful
- allowing ‘ecological niches’

Dan Ellis
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Scene Analysis Task Example
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Domains: Personal Audio

- LifeLog / MyLifeBits /
Remembrance Agent:
Easy to record everything you
hear

« Then what?

- prohibitively time consuming to
search

- but .. applications if access easier

- Automatic content analysis / indexing...
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Domains: ICSI Meeting Recorder Corpus

- N T\‘
- released through NIST/LDC

 Lots of speaker overlap, noise, etc.
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Summary

- Scene analysis is abstraction of objects

 Real-world constraints come from
sound models

- Speech Fragment Decoding
finds best model, best segregation

- without too much search

* Field needs standardized, ‘real-world’
evaluation task
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