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Acoustic/Auditory Scene Analysis

 

• Scene analysis is sound understanding

 

- understanding = abstraction

 

• Applications

 

- robust interfaces
- robots
- indexing/retrieval
- prostheses
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The Mixture Problem

 

“Imagine two narrow channels dug up from the edge of a 
lake, with handkerchiefs stretched across each one.  
Looking only at the motion of the handkerchiefs, you are 
to answer questions such as: How many boats are there 
on the lake and where are they?”   

 

(after Bregman’90)

 

• Objects (sources), not waveforms

 

- .. and only their attributes “of interest”

 

• Seems highly underconstrained

• But: Hearing is ecologically grounded

 

- reflects natural scene properties = constraints
- subjective, not absolute
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The Signal Separation Perspective

 

• Search for a representation / parameterization 
in which sources become separate

• Inverse filter & cancel (ICA, beamforming)

• TF-mask: find distinct time-freq support

• Innate limitations with dense maskers
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The Pattern Recognition Perspective

 

• Bayes Rule: 
Event / Model 
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• Trained signal model 
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- the possibilities under consideration
- constraints on solution
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Separation vs. Recognition

 

• Final goal is scene abstraction:
Do we need signal separation?

 

- separate-then-recognize is a nice approach 
– if you can separate

- classification is often still possible 
when separation is hopeless

 

• Classification/Recognition 

 

- can express ambiguous answers
- still applicable when data is missing

(based on ignorance)

 

• “Perceiving is more than recognizing”

 

- identify class
+ extract parameters of instance

.. for description of scene
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Constraints in Scene Analysis 

 

• Learned constraints are central to human 
speech recognition

 

- click-language example
- foreign-language cocktail party
- ... not just for speech

 

• Computational systems need similar 
‘constraints’ on real-world sounds

 

- hand-specify rules?
- or: learn from examples?
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Outline

 

Constraints and Scene Analysis 

Model-Based Organization

 

- Missing-Data Recognition
- Comparing Segregation Masks
- Multi-Source Decoding
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Model-based Organization:
Sound Fragment Decoding

 

(Cooke et al. ’01; Barker, Cooke & Ellis)

 

• Signal separation is too hard!
Instead:

 

- segregate features into partially-observed 
sources

- then classify

 

• Made possible by missing data recognition

 

- integrate over uncertainty in observations

 

• Goal:
Relate clean speech models 
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to speech-plus-noise mixture observations

 

- .. and make it tractable
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Missing Data Recognition

 

• Speech models 
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 are multidimensional...

 

- i.e. means, variances for every freq. channel
- need values for all dimensions to get 

 

p

 

(•)

 

• But: can evaluate over a 
subset of dimensions 
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• Hence, 
missing data recognition:

 

- hard part is finding the mask (segregation)
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Comparing Segregation Masks

• Standard classification chooses between 
models M to match source features X

• Mixtures: observed features Y, segregation S, 
all related by P( X | Y,S ) :

• Joint classification of model and segregation:

( P(X) no longer constant )

M* P M X( )
M

argmax P X M( ) P M( )
P X( )
--------------◊

M
argmax = =

freq

Observation
Y(f )
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Source
X(f )

P M S Y,( ) P M( ) P X M( )
P X Y S,( )

P X( )
-------------------------◊ XdÚ P S Y( )◊=
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Calculating fragment matches

• P(X|M) - the clean-signal feature model

• P(X|Y,S)/P(X) - is X ‘visible’ given segregation?

• Integration collapses some bands...

• P(S|Y) - segregation inferred from observation
- just assume uniform, find S for most likely M 
- or: use extra information in Y to distinguish S’s...

• Result: 
- probabilistically-correct relation between 

clean-source models P(X|M)
and inferred, recognized source + segregation 
P(M,S|Y)

P M S Y,( ) P M( ) P X M( )
P X Y S,( )

P X( )
-------------------------◊ XdÚ P S Y( )◊=
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Using CASA features

• P(S|Y) links acoustic information to segregation
- is this segregation worth considering?
- how likely is it?

• Opening for CASA-style local features
- periodicity/harmonicity:

frequency bands belong together
- onset/continuity:

time-frequency region must be whole

Frequency Proximity HarmonicityCommon Onset
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Fragment decoding

• Limiting S to whole fragments 
makes hypothesis search tractable:

- choice of fragments reflects P(S|Y) · P(X|M)
i.e. best combination of segregation
and match to speech models

• Merging hypotheses limits space demands
- .. but erases specific history
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Speech fragment decoder results

• Simple P(S|Y) model forces contiguous regions 
to stay together
- big efficiency gain when searching S space

• Clean-models-based recognition 
rivals trained-in-noise recognition
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Multi-Source Decoding

• Match multiple models at once?

- disjoint subsets of cells for each source
- each model match P(Mx|Sx,Y) is independent

- masks are mutually dependent: P(S1,S2|Y)

Y(t)

S1(t)
M1

S2(t)
M2
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Model-Based Organization:
Summary

• Results constrained by source model P(X|M)
- single, ideal clean-signal model

• Local signal cues introduced via P(S|Y)
- limited subset of segregations are considered
- opening for bottom-up CASA cues

• Output is classification M* 
- could do TF-mask filtering, but not the point
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Outline

Constraints and Scene Analysis

Model-Based Organization

Evaluation
- Tasks
- Domains
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Evaluation: Tasks

• Evaluation standards
make research fundable
- sponsors want tangible progress

• The DARPA / ASR experience
- pro: able to judge relative merits
- con: extinction of ‘2nd-best’ techniques

neglected aspects e.g. source separation

• Minimize pathologies by:
- defining a ‘real’ task - get something useful
- allowing ‘ecological niches’

3
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Scene Analysis Task Example
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Domains: Personal Audio

• LifeLog / MyLifeBits / 
Remembrance Agent:
Easy to record everything you 
hear

• Then what?
- prohibitively time consuming to 

search
- but .. applications if access easier

• Automatic content analysis / indexing...
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Domains: ICSI Meeting Recorder Corpus

• Real meetings, 16 channel recordings,  80 hrs 

- released through NIST/LDC

• Lots of speaker overlap, noise, etc.
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Summary

• Scene analysis is abstraction of objects

• Real-world constraints come from 
sound models

• Speech Fragment Decoding 
finds best model, best segregation
- without too much search

• Field needs standardized, ‘real-world’ 
evaluation task
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