Tandem acoustic modeling: Neural nets for mainstream ASR?

Dan Ellis
International Computer Science Institute
Berkeley CA
dpwe@icsi.berkeley.edu

Outline

- 1 Tandem acoustic modeling
- Inside Tandem systems: What's going on?
- 3 Future directions

1

Tandem acoustic modeling

- ETSI Aurora 'noisy digits' evaluation
 - new features (for distributed speech recognition)
 - Gaussian mixture HTK back-end provided
- How to use hybrid-connectionist tricks? (multistream posterior combination etc.)
- → Use posterior outputs as features for HTK...
- Tandem connection of two large statistical models:
 Neural Net (NN) and Gaussian Mixture (GMM)

The Tandem structure

- Better results when posteriors are made more 'Gaussian'
- Tandem allows posterior combination for HTK

Training a tandem model

- Tandem modeling uses two feature-spaces
 - NN estimates phone posteriors (discriminant)
 - GMM models subword likelihoods (distributions)

Training procedure

- NN trained (backprop) on base features to forced-alignment phone targets
- GMM trained on modified NN outputs via EM to maximise subword model likelihoods
- HTK backend knows *nothing* of phone models
- Decoupled (good) but sequential
- Training sets?
 - can use same for both learning different info
 - could use different for cross-task robustness

Tandem system results

• It works very well:

System-features	Avg. WER 20-0 dB	Baseline WER ratio
HTK-mfcc	13.7%	100%
Neural net-mfcc	9.3%	84.5%
Tandem-mfcc	7.4%	64.5%
Tandem-msg+plp	6.4%	47.2%

Inside Tandem systems: What's going on?

Visualizations of the net outputs

Neural net normalizes away noise

Feature space 'magnification'

 Neural net performs a nonlinear remapping of the feature space

- small changes across critical boundaries result in large output changes

Relative contributions

 Approx relative impact on baseline WER ratio for different component:

Tandem combo over HTK mfcc baseline: +53%

Omitting the GMMs

"Tied posteriors" (Rottland & Rigoll, ICASSP):

- EM training of GMM and HMM mixture weights

only mixture weights trained by EM

System	WSJ0 WER
Hybrid baseline	15.8%
"Tied posteriors"	9.4%

Discussion

- Key limitation: task-specific
 - NN is not like features (it's part of the trained system)
- Aurora1999 was a 'matched condition' task
 - same noises added in training and test
 - Aurora2000 has mismatched conditions
 - Tandem modeling works just as well
- How to relax specificity?
 - train on alternative task?
 - use articulatory targets

Future developments

- How to optimize NN for this structure?
 - integrated training...previous work
 - HMM states as targets?
- Understanding the gains
 - better analysis of each piece's contribution
 - strengths of different modeling approaches
 - effects of model/training set size variation
 - "tied posteriors"?
- Other speech corpora
 - need both NN and GMM systems...
 - Switchboard is next goal

