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(i) Tandem acoustic modeling

« ETSI Aurora ‘noisy digits’ evaluation
- new features (for distributed speech recognition)
- Gaussian mixture HTK back-end provided

 How to use hybrid-connectionist tricks?
(multistream posterior combination etc.)

— Use posterior outputs
as features for HTK...

= Tandem connection of two large statistical
models:

Neural Net (NN) and Gaussian Mixture (GMM)
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The Tandem structure
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Training a tandem model

Tandem modeling uses two feature-spaces
- NN estimates phone posteriors (discriminant)
- GMM models subword likelihoods (distributions)

Training procedure

- NN trained (backprop) on base features to
forced-alignment phone targets

- GMM trained on modified NN outputs via EM to
maximise subword model likelihoods

- HTK backend knows nothing of phone models
Decoupled (good) but sequential

Training sets?
- can use same for both - learning different info
- could use different - for cross-task robustness
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Tandem system results

o It works very well:

WER as a function of SNR for various Aurora99 systems
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HTK-mfcc 13.7% 100%
Neural net-mfcc 9.3% 84.5%
Tandem-mfcc 7.4% 64.5%
Tandem-msg+plp 6.4% 47.2%
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(2] Inside Tandem systems:
What'’s going on?

» Visualizations of the net outputs
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* Neural net normalizes away noise
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Feature space ‘magnification’

* Neural net performs a nonlinear remapping of
the feature space

Smoothed spectrum
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- small changes across critical boundaries
result in large output changes
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Relative contributions

» Approx relative impact on baseline WER ratio
for different component:
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Omitting the GMMs

“Tied posteriors” (Rottland & Rigoll, ICASSP):
Conventional ASR (HTK)
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- EM training of GMM and HMM mixture weights

Rottland & Rigoll (2000)
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- only mixture weights trained by EM
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Hybrid baseline 15.8%
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9 Discussion

« Key limitation: task-specific
- NN is not like features
(it's part of the trained system)

e Auroral999 was a ‘matched condition’ task
- same noises added in training and test
- Aurora2000 has mismatched conditions
- Tandem modeling works just as well

* How to relax specificity?
- train on alternative task?
- use articulatory targets
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Future developments

 How to optimize NN for this structure?
- integrated training...previous work
- HMM states as targets?

* Understanding the gains
- better analysis of each piece’s contribution
- strengths of different modeling approaches
- effects of model/training set size variation
- “tied posteriors™?

* Other speech corpora
- need both NN and GMM systems...
- Switchboard is next goal

Tandem modeling - Dan Ellis 2000-06-20 - 11



