RESPITE progress report

Dan Ellis
International Computer Science Institute, Berkeley CA
<dpwe@icsi.berkeley.edu>

Outline

- 1 Hybrid AURORA system
- 2 Using hybrid results with HTK
- 3 Multifeature design
- 4 Multistream pronunciation modeling

0

Hybrid AURORA system

AURORA noisy digits task

- TIDIGITS + 4 kinds of noise x 7 SNR levels
- standard HTK back-end provided
- objective: standard features for mobile phones

ICSI's small-vocab techniques

- modulation-filtered spectrogram (MSG) features
- posterior probability combination (multistream)

Can we combine them?

- hybrid NN-HMM baseline system for AURORA
- use a TIDIGITS lexicon & phone models
- bootstrap labels from NUMBERS95 network
- use 480 hidden-unit net as N95

Baseline AURORA results

- AURORA test has 28 numbers...
- ...report just a few
 - mean WER % for ∞, 15, 5, -5 dB SNR
 - + overall mean ratio to HTK MFCC baseline

System	Feature	Clean	SNR15	SNR5	SNR-5	Avg. ratio
HTK	MFCC+d	1.4%	3.7%	15.9%	68.0%	100.0%
Hybrid	MFCC+d	2.2%	2.6%	9.9%	49.1%	82.1%
Hybrid	plp12N+d	2.6%	2.8%	10.6%	47.9%	89.6%
Hybrid	msg3N	2.1%	2.9%	11.6%	49.2%	87.1%
HTK	msg3NKG	5.6%	6.4%	21.5%	66.8%	184.5%

ICSI: RESPITE progress - Dan Ellis

1999sep13 - 3

Combination systems

Posterior combination has worked well

$P(q_i|X_1,X_2) \propto P(q_i|X_1) \cdot P(q_i|X_2) / P(q_i)$... if $X_1 \perp X_2 \mid q$

But it depends on features

Features	Clean	SNR15	SNR5	SNR-5	Avg. ratio
plp12Nd	2.6%	2.8%	10.6%	47.9%	89.6%
msg3N	2.1%	2.9%	11.6%	49.2%	87.1%
plp12Nd-msg3N	1.7%	2.4%	9.5%	47.3%	74.1%
plp12N-msg3aN • dplp12N-msg3bN	1.7%	2.1%	8.8%	46.9%	70.1%
plp12Nd • msg3N	1.5%	1.9%	8.2%	43.0%	63.0%

Using hybrid results with HTK

- AURORA specification: use HTK recognizer
- How to put combinations into HTK
 - feature combination (with LDA?)
 - posteriors as features (only 24 phone classes)

HTK handles it!

System	Feature	Clean	SNR15	SNR5	SNR-5	Avg. ratio
Hybrid	plp • msg	1.5%	1.9%	8.2%	43.0%	63.0%
HTK	posteriors	1.1%	1.9%	8.2%	46.1%	59.1%

ISI

Tailoring posteriors for HTK

- Posteriors are very un-Gaussian
 - log-transform doesn't help much
- A linear output layer helps a lot
 - remove softmax: $y_i = \exp(x_i)/\Sigma_j(\exp(x_j))$

• Do combinations by summing linear outputs

System	Feature	Clean	SNR15	SNR5	SNR-5	Avg. ratio
HTK	posteriors	1.1%	1.9%	8.2%	46.1%	59.1%
нтк	log(p)	0.9%	1.8%	8.9%	48.8%	58.6%
нтк	Σ(lin. o/p)	0.9%	1.6%	7.7%	44.1%	51.6%

Multifeature design

(Mike Shire)

- 'Optimal' features for different conditions
 - subband envelope domain
 - linear-discriminant analysis (LDA) for filter coeffs
- Modulation-frequency domain responses for clean, reverb, mixture:

4

Multistream pronunciation models

(Barry Chen)

- Combine streams in the decoder
 - 'HMM combination'
 - separate state assignment for each stream
 - constrain (disallow?) asynchrony
- Are particular asynchronies important?
 - between certain bands?
 - between certain sounds?
 - in particular directions?
- Re-estimate transition probabilities in 1-state asynchrony 4-band models
 - no improvement yet

