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Mixtures, Separation, and Models

® Sounds rarely occur in isolation
O .. so analyzing mixtures is a problem
O .. for humans and machines
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Mixture Organization Scenarios

® [nteractive voice systems
O human-level understanding Is expected

® Speech prostheses
O crowds: # | complaint of hearing aid users

® Archive analysis
O identifying and isolating sound events
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® Unmixing/remixing/enhancement...
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Separation vs. Inference

® |deal separation is rarely possible
O many situations where overlaps cannot be removed

® Overlaps = Ambiguity
O scene analysis = find “most reasonable™ explanation
® Ambiguity can be expressed probabilistically
O .e. posteriors of sources {Si} given observations X:

P({S;}| X) = P(X [{S;}) P({S;})

o search over {S;}

® Better — better inference

O . learn from ! ¥
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Approaches to Separation

ICA CASA Model-based
* Multi-channel * Single-channel ¢ Any domain
* Fixed filtering * [ime-var. filter ¢ Param. search
 Perfect separation * Approximate * Synthetic
— maybel separation output
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O or combinations ...
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EM for Model-based Separation

® Expectation-Maximization algorithm
— for solving partially-unknown problems
O (only local optimality guaranteed)

® EM for model-based separation

O E-step: find distribution of unknowns p(u)
given current E-step

model parameters © p(ul©6') = p(z, ul®™)/p(|O™)

and observations x

M-step

O M-step: optimize O Ol = argmax Eyyje)p(z,ul®)
to maximize fit to
x given current p(u)

u is.. GMM mixture assignment
.. I-F cell dominance

.. current phone of voice i 0
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What is a Source Model?

° describes signal behavior
O encapsulates constraints on form of signal
O (any such constraint can be seen as a model...)

® A model has parameters
O + parameters souce gl | | fiter (@ Pedn
— instance SN

n

® \What is not a source model?

O detall not provided In instance
e.g. using phase from original mixture

O constraints on Interaction between sources
e.g. Independence, clustering attributes
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Monaural Speech Separation

® Cooke & Lee’s Speech Separation Challenge

O short, grammatically-constrained utterances:
<command:4><color:4><preposition:4><letter:25><number:10><adverb:4>
e.g.

O task: report letter + number for “white”

O special session at Interspeech '06

® Separation or Description!?
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Codebook Models

® Given models for sources,
find “best” (most likely) states for spectra:

p(x|i1,i2) = N(X;€i1 +€2,Z)  model
{i1(¢),ir(t)} = argmax;, ;,p(x(t)|i1,ip) Inference of

source state
O can include sequential constraints...

O different domains for combining ¢ and defining X
® E.g. stationary noise:

In speech-shaped noise VQ inferred states
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Speech Recognition Models

® Decode with Factorial HMM

O |.e. two state sequences,
one model for each voice

O exploit sequence constraints,
speaker differences!

model 2

model1 e—e —o <9 —*°

® |IBM “superhuman’ lroquois system e
O fewer errors than people for same speaker, level
O exploit grammar constraints - higher-level dynamics
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Speaker-Adapted (SA) Models

® Factorial HMM needs distinct speakers

Mixture: t32_swil2a_m18_sbar9n

O use “eligenvoice’ speaker space
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Binaural Speech Separation

® ? or 3 sources in reverberation
O assume just 2 ‘ears

® Tasks:

O |dentify positions of sources (and number?)
o source signals I
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Spatial Estimation in Reverb

® Model interaural spectrum of each source
as stationary level and time differences:

L(w7t) _ JWT
Rlwt) a(w)e?" N(w,t)

o converge via EM to a(), T for each source
o mask is Pr(X(z,w) dominated by source i)
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Spatial Estimation Results

® [Modeling uncertainty improves results
O tradeoff between constraints & noisiness ~N )
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Combining Spatial + Speech Model

® [nteraural parameters give

ILD{w), ITD;, Pr(X(t, w) = S(t, w))
® Speech source model can give

Pr(Si(z, w) is speech signal)

® Can combine into one big

E-step
p(ul©®™) = p(z, ul©0™) /p(z|0)

u is: Pr(cell from source i)
bhoneme sequence

M-step @ is: interaural params

elntl) — argnéax E,jem)p(T,u|0)
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Summary & Conclusions

® |nferring model parameters is very general
O ..and very difficult, in general

® Speech models can separate single channels
O . better match to individual = better results

® Spatial cues can separate binaural signals
O .. but account for uncertainty from e.g. reverb

° approach can integrate them both
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