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LabROSA Overview
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1.  Mixtures, Separation, and Models
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• Sounds rarely occur in isolation
.. so analyzing mixtures is a problem
.. for humans and machines
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Mixture Organization Scenarios
• Interactive voice systems

human-level understanding is expected

• Speech prostheses
crowds: #1 complaint of hearing aid users

• Archive analysis
identifying and isolating sound events

• Unmixing/remixing/enhancement...
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combination physics source models

Separation vs. Inference
• Ideal separation is rarely possible

many situations where overlaps cannot be removed

• Overlaps → Ambiguity
scene analysis = find “most reasonable” explanation

• Ambiguity can be expressed probabilistically
i.e. posteriors of sources {Si} given observations X:

P({Si}| X) ∝ P(X |{Si}) P({Si})

search over {Si} ??

• Better source models → better inference
.. learn from examples?
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Approaches to Separation

  or combinations ...
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•
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EM for Model-based Separation
• Expectation-Maximization algorithm 

– for solving partially-unknown problems
(only local optimality guaranteed)

• EM for model-based separation
E-step:  find distribution of unknowns p(u) 
given current 
model parameters Θ 
and observations x
M-step: optimize Θ 
to maximize fit to 
x given current p(u)
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E-step

M-step

u is... GMM mixture assignment
... T-F cell dominance
... current phone of voice i
...
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What is a Source Model?
• Source Model describes signal behavior

encapsulates constraints on form of signal
(any such constraint can be seen as a model...)

• A model has parameters
model + parameters 
→ instance

• What is not a source model?
detail not provided in instance
e.g. using phase from original mixture
constraints on interaction between sources
e.g. independence, clustering attributes
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2. Monaural Speech Separation
• Cooke & Lee’s Speech Separation Challenge

short, grammatically-constrained utterances:
<command:4><color:4><preposition:4><letter:25><number:10><adverb:4>

       e.g. "bin white by R 8 again"

task: report letter + number for “white”
special session at Interspeech ’06

• Separation or Description?
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Codebook Models
• Given models for sources, 

find “best” (most likely) states for spectra:

can include sequential constraints...
different domains for combining c and defining 

• E.g. stationary noise:
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{i1(t), i2(t)} = argmaxi1,i2p(x(t)|i1, i2)
p(x|i1, i2) = N (x;ci1+ ci2,Σ) combination
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Speech Recognition Models
• Decode with Factorial HMM

i.e. two state sequences, 
one model for each voice
exploit sequence constraints, 
speaker differences?

• IBM “superhuman” Iroquois system
fewer errors than people for same speaker, level
exploit grammar constraints - higher-level dynamics
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Kristjansson, Hershey et al. ’06
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Speaker-Adapted (SA) Models
• Factorial HMM needs distinct speakers
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Mixture: t32_swil2a_m18_sbar9n
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3. Binaural Speech Separation
• 2 or 3 sources in reverberation

assume just 2 ‘ears’

• Tasks:
identify positions of sources (and number?)
recover source signals
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Spatial Estimation in Reverb
• Model interaural spectrum of each source

as stationary level and time differences:

converge via EM to a(), τ for each source
mask is Pr(X(t,ω) dominated by source i)
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Spatial Estimation Results
• Modeling uncertainty improves results

tradeoff between constraints & noisiness
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Combining Spatial + Speech Model
• Interaural parameters give

    ILDi(ω),  ITDi,  Pr(X(t, ω) = Si(t, ω))
• Speech source model can give 

    Pr(Si(t, ω) is speech signal)
• Can combine into one big EM framework...
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E-step

M-step

u is: Pr(cell from source i)
      phoneme sequence

Θ is: interaural params
      speaker params
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Summary & Conclusions
• Inferring model parameters is very general

.. and very difficult, in general

• Speech models can separate single channels
.. better match to individual → better results

• Spatial cues can separate binaural signals
.. but account for uncertainty from e.g. reverb

• EM-type approach can integrate them both
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