Auditory Scene Analysis in Humans and Machines

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA

dpwe@ee.columbia.edu

http://labrosa.ee.columbia.edu/

- I. The ASA Problem
- 2. Human ASA
- 3. Machine Source Separation
- 4. Systems & Examples
- 5. Concluding Remarks

Auditory Scene Analysis

Sounds rarely occurs in isolation

- o.. but recognizing sources in mixtures is a problem
- o .. for humans and machines

_ab

2006-05-20 - 2/54

COLUMBIA UNIVERSITY

Sound Mixture Organization

- Goal: recover individual sources from scenes
 - .. duplicating the perceptual effect

- Problems: competing sources, channel effects
- Dimensionality loss

The Problem of Mixtures

"Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?" (after Bregman'90)

- Received waveform is a mixture
 - o 2 sensors, N sources underconstrained
- Undoing mixtures: hearing's primary goal?
 - O.. by any means available

Source Separation Scenarios

- Interactive voice systems
 - o human-level understanding is expected
- Speech prostheses
 - o crowds: # I complaint of hearing aid users
- Archive analysis
 - o identifying and isolating sound events

Unmixing/remixing/enhancement...

How Can We Separate?

- By between-sensor differences (spatial cues)
 - o 'steer a null' onto a compact interfering source
- By finding a 'separable representation'
 - o spectral? sources are broadband but sparse
 - operiodicity? maybe for pitched sounds
 - o something more signal-specific...
- By inference (based on knowledge/models)
 - acoustic sources are redundant
 - → use part to guess the remainder

Outline

- I. The ASA Problem
- 2. Human ASA
 - scene analysis
 - o separation by location
 - separation by source characteristics
- 3. Machine Source Separation
- 4. Systems & Examples
- 5. Concluding Remarks

Auditory Scene Analysis

• Listeners organize sound mixtures into discrete perceived sources based on within-signal cues (audio + ...)

common onset+ continuity

- o spatial, modulation, ...
- o learned "schema"

Perceiving Sources

Harmonics distinct in ear, but perceived as

one source ("fused"):

- o depends on common onset
- o depends on harmonics
- Experimental techniques
 - o ask subjects "how many"
 - o match attributes e.g. pitch, vowel identity
 - obrain recordings (EEG "mismatch negativity")

Auditory Scene Analysis Bregman'90

Darwin & Carlyon'95

- How do people analyze sound mixtures?
 - break mixture into small elements (in time-freq)
 - elements are grouped in to sources using cues
 - sources have aggregate attributes
- Grouping rules (Darwin, Carlyon, ...):
 - ocues: common onset/offset/modulation. harmonicity, spatial location, ...

(after Darwin 1996)

Streaming

- Sound event sequences are organized into streams
 - i.e. distinct perceived sources
 - o difficult to make comparisons between streams
- Two-tone streaming experiments:

Illusions & Restoration

- Illusion = hearing more than is "there"
 - e.g. "pulsation threshold" example - tone is masked

o "old-plus-new" heuristic: existing sources continue

- Need to infer most likely real-world events
 - o observation equally good match to either case
 - o prior likelihood of continuity much higher

Human Performance: Spatial Separation

Brungart et al.'02

- Task: Coordinate Response Measure
 - o "Ready Baron go to green eight now"
 - 256 variants, 16 speakers
 - o correct = color and number for "Baron"
- Accuracy as a function of spatial separation:

o Range effect

Separation by Vocal Differences

Brungart et al.'0 l

- CRM varying the level and voice character
 - (same spatial location)

o energetic vs. informational masking

Varying the Number of Voices

Brungart et al.'0 l

Two voices OK;

More than two voices harder

• (same spatial origin)

• mix of N voices tends to speech-shaped noise...

Outline

- I. The ASA Problem
- Human ASA
- 3. Machine Source Separation
 - Independent Component Analysis
 - Computational Auditory Scene Analysis
 - Model-Based Separation
- 4. Systems & Examples
- 5. Concluding Remarks

Scene Analysis Systems

- "Scene Analysis"
 - onot necessarily separation, recognition, ...
 - scene = overlapping objects, ambiguity
- General Framework:

- distinguish input and output representations
- distinguish engine (algorithm) and control (constraints, "computational model")

Human and Machine Scene Analysis

- CASA (e.g. Brown'92):
 - O Input: Periodicity, continuity, onset "maps"
 - Output: Waveform (or mask)
 - Engine: Time-frequency masking
 - O Control: "Grouping cues" from input
 - or: spatial features (Roman, ...)

Human and Machine Scene Analysis

- CASA (e.g. Brown'92):
- ICA (Bell & Sejnowski et seq.):
 - O Input: waveform (or STFT)
 - Output: waveform (or STFT)
 - O Engine: cancellation
 - O Control: statistical independence of outputs
 - or energy minimization for beamforming

Human and Machine Scene Analysis

- CASA (e.g. Brown'92):
- ICA (Bell & Sejnowski et seq.):
- Human Listeners:
 - O Input: excitation patterns ...
 - Output: percepts ...
 - O Engine: ?
 - O Control: find a plausible explanation

Machine Separation

- Problem: Features of combinations are not combinations of features
 - voice is easy to characterize when in isolation
 - o redundancy needed for real-world communication

COLUMBIA UNIVERSITY

Separation Approaches

ICA

- Multi-channel
- Fixed filtering
- Perfect separation– maybe!

CASA / Model-based

- Single-channel
- Time-varying filtering
- Approximate
 Separation

Very different approaches!

Independent Component Analysis Bell 8

Bell & Sejnowski'95 Smaragdis'98

Central idea:

Search unmixing space

to maximize independence of outputs

o simple mixing

→ a good solution (usually) exists

Mixtures, Scatters, Kurtosis

Mixtures of sources become more Gaussian

o can measure e.g. via 'kurtsosis' (4th moment)

ICA Limitations

- Cancellation is very finicky
 - hard to get more than ~ 10 dB rejection

from
Parra &
Spence'00

- The world is not instantaneous, fixed, linear
 - o subband models for reverberation
 - o continuous adaptation
- Needs spatially-compact interfering sources

Computational Auditory Scene Analysis Brov

Central idea:

Brown & Cooke'94 Okuno et al.'99 Hu & Wang'04 ...

Segment time-frequency into sources based on perceptual grouping cues

o... principal cue is harmonicity

CASA Preprocessing

Slaney & Lyon '90

- Correlogram: a 3rd "periodicity" axis
 - o envelope of wideband channels follows pitch

o c/w Modulation Filtering [Schimmel & Atlas '05]

2006-05-20 - 27/54

"Weft" Periodic Elements

Ellis '96

Represent harmonics without grouping?

• hard to separate multiple pitch tracks

Time-Frequency (T-F) Masking

"Local Dominance" assumption

o oracle masks are remarkably effective!

 $\circ |mix - max(male, female)| < 3dB for ~80\% of cells$

Auditory Scene Analysis - Dan Ellis

2006-05-20 - 29/54

COLUMBIA UNIVERSITY

Combining Spatial + T-F Masking

 T-F masks based on inter-channel properties

[Roman et al. '02], [Yilmaz & Rickard '04]

multiple channels make
 CASA-like masks better

T-F masking after ICA

[Blin et al. '04]

cancellation can remove energy within T-F cells

CASA limitations

- Driven by local features
 - o problems with masking, aperiodic sources...
- Limitations of T-F masking
 - o need to identify single-source regions
 - o cannot undo overlaps leaves gaps

Wang '04

Auditory "Illusions"

- How do we explain illusions?
 - o pulsation threshold

o sinewave speech

o phonemic restoration

 Something is providing the missing (illusory) pieces ... source models

Adding Top-Down Constraints

Ellis '96

Bottom-up CASA: limited to what's "there"

Top-down predictions allow illusions

• match observations to a "world-model"...

Separation vs. Inference

- Ideal separation is rarely possible
 - o i.e. no projection can completely remove overlaps
- Overlaps ⇒ Ambiguity
 - scene analysis = find "most reasonable" explanation
- Ambiguity can be expressed probabilistically
 - \circ i.e. posteriors of sources $\{S_i\}$ given observations X:

$$P(\lbrace S_i \rbrace | X) \propto P(X | \lbrace S_i \rbrace) P(\lbrace S_i \rbrace)$$

combination physics source models

- Better source models → better inference
 - o .. learn from examples?

Simple Source Separation

Roweis '01, '03 Given models for sources, Kristjannson '04, '06 find "best" (most likely) states for spectra:

$$p(\mathbf{x}|i_1,i_2) = \mathcal{N}(\mathbf{x};\mathbf{c}_{i1} + \mathbf{c}_{i2}, \boldsymbol{\Sigma}) \stackrel{combination}{model}$$

$$\{i_1(t), i_2(t)\} = argmax_{i_1,i_2}p(\mathbf{x}(t)|i_1,i_2) \stackrel{inference}{source} of$$
source state

- o can include sequential constraints...
- \circ different domains for combining ${f c}$ and defining Σ
- E.g. stationary noise:

Lab

Laboratory for the Recognition and Organization of Speech and Audio

Can Models Do CASA?

- Source models can learn harmonicity, onset
 - o... to subsume rules/representations of CASA

- o can capture spatial info too [Pearlmutter & Zador'04]
- Can also capture sequential structure
 - o e.g. consonants follow vowels
 - ... like people do?
- But: need source-specific models
 - ... for every possible source
 - ouse model adaptation? [Ozerov et al. 2005]

Separation or Description?

- Are isolated waveforms required?
 - o clearly sufficient, but may not be necessary
 - o not part of perceptual source separation!
- Integrate separation with application?
 - o e.g. speech recognition

words output = abstract description of signal

7+

COLUMBIA UNIVERSITY

Missing Data Recognition

Cooke et al. '01

- Speech models p(x|M) are multidimensional...
 - \circ need values for all dimensions to evaluate $p(\bullet)$
- But: can make inferences given just a subset of dimensions x_k $p(x_k|M) = \int p(x_k, x_u|M) dx_u$

Hence, missing data recognition:

hard part is finding the mask (segregation)

Laboratory for the Recognition and Organization of Speech and Audio

2006-05-20 - 38/54

The Speech Fragment Decoder

Barker et al. '05

 Match 'uncorrupt' spectrum to ASR models using missing data

 Joint search for model M and segregation S to maximize:

$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$
Isolated Source Model Segregation Model

Using CASA cues

$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$

- CASA can help search
 - consider only segregations made from CASA chunks
- CASA can rate segregation
 - \circ construct P(S|Y) to reward CASA qualities:

Outline

- I. The ASA Problem
- Human ASA
- 3. Machine Source Separation
- 4. Systems & Examples
 - Periodicity-based
 - Model-based
 - Music signals
- 5. Concluding Remarks

Current CASA

Hu & Wang'03

State-of-the-art bottom-up separation

- o noise robust pitch track
- label T-F cells by pitch
- o extensions to unvoiced transients by onset

Prediction-Driven CASA

Ellis'96

- Identify objects in real-world scenes
 - o using "sound elements"

COLUMBIA UNIVERSITY

2006-05-20 - 43/54

Singing Voice Separation

Avery Wang'94

• Pitch tracking + harmonic separation

Periodic/Aperiodic Separation

Virtanen'03

Harmonic structure + repetition of drums

Auditory Scene Analysis - Dan Ellis

2006-05-20 - 45/54

"Speech Separation Challenge"

- Mixed and Noisy Speech ASR task defined by Martin Cooke and Te-Won Lee
 - o short, grammatically-constrained utterances:

<command:4><color:4>command:4><color:4>col

- http://www.dcs.shef.ac.uk/~martin/SpeechSeparationChallenge.htm
- See also "Statistical And Perceptual Audition" workshop
 - http://www.sapa2006.org/

IBM's "Superhuman" Separation

Optimal inference on Mixed Spectra

o model each speaker (512 mix GMM)

Kristjansson et a

Interspeech'06

Applied to Speech Separation Challenge:

- Infer speakers and gain
- Reconstruct speech
- Recognize as normal...
- Use grammar constraints

2006-05-20 - 47/54

Transcription as Separation

- Transcribe piano recordings by classification
 - train SVM detectors for every piano note
 - 88 separate detectors, independent smoothing
- Trained on player piano recordings

Sse transcription to resynthesize...

Piano Transcription Results

- Significant improvement from classifier:
 - frame-level accuracy results:

Algorithm	Errs	False Pos	False Neg	d'
SVM	43.3%	27.9%	15.4%	3.44
Klapuri&Ryynänen	66.6%	28.1%	38.5%	2.71
Marolt	84.6%	36.5%	48.1%	2.35

Breakdownby frametype:

o http://labrosa.ee.columbia.edu/projects/melody/

2006-02-13

p. 49/32

Outline

- I. The ASA Problem
- Human ASA
- 3. Machine Source Separation
- 4. Systems & Examples
- 5. Concluding Remarks
 - Evaluation

Evaluation

- How to measure separation performance?
 - o depends what you are trying to do
- SNR?
 - o energy (and distortions) are not created equal
 - o different nonlinear components [Vincent et al. '06]
- Intelligibility?
 - rare for nonlinear processing to improve intelligibility
 - listening tests expensive
- ASR performance?

• separate-then-recognize too simplistic; ASR needs to accommodate separation

Evaluating Scene Analysis

- Need to establish ground truth
 - subjective sources in real sound mixtures?

More Realistic Evaluation

Real-world speech tasks

- crowded environments
- applications:
 communication, command/control, transcription

Metric

- human intelligibility?
- diarization' annotation (not transcription)

Summary & Conclusions

- Listeners do well separating sound mixtures
 - using signal cues (location, periodicity)
 - using source-property variations
- Machines do less well
 - o difficult to apply enough constraints
 - o need to exploit signal detail
- Models capture constraints
 - o learn from the real world
 - adapt to sources
- Separation feasible in certain domains
 - o describing source properties is easier

Sources / See Also

- NSF/AFOSR Montreal Workshops '03, '04
 - www.ebire.org/speechseparation/
 - o <u>labrosa.ee.columbia.edu/Montreal2004/</u>
 - o as well as the resulting book...

- Hanse meeting:
 - www.lifesci.sussex.ac.uk/home/Chris_Darwin/ Hanse/
- DeLiang Wang's ICASSP'04 tutorial
 - o www.cse.ohio-state.edu/~dwang/presentation.html
- Martin Cooke's NIPS'02 tutorial
 - www.dcs.shef.ac.uk/~martin/nips.ppt

References 1/2

- [Barker et al. '05] J. Barker, M. Cooke, D. Ellis, "<u>Decoding speech in the presence of other sources</u>," Speech Comm. 45, 5-25, 2005.
- [Bell & Sejnowski '95] A. Bell & T. Sejnowski, "An information maximization approach to blind separation and blind deconvolution," Neural Computation, 7:1129-1159, 1995.
- [Blin et al.'04] A. Blin, S. Araki, S. Makino, "A sparseness mixing matrix estimation (SMME) solving the underdetermined BSS for convolutive mixtures," ICASSP, IV-85-88, 2004.
- [Bregman '90] A. Bregman, Auditory Scene Analysis, MIT Press, 1990.
- [Brungart '01] D. Brungart, "Informational and energetic masking effects in the perception of two simultaneous talkers," JASA 109(3), March 2001.
- [Brungart et al. '01] D. Brungart, B. Simpson, M. Ericson, K. Scott, "Informational and energetic masking effects in the perception of multiple simultaneous talkers," JASA 110(5), Nov. 2001.
- [Brungart et al. '02] D. Brungart & B. Simpson, "The effects of spatial separation in distance on the informational and energetic masking of a nearby speech signal", JASA 112(2), Aug. 2002.
- [Brown & Cooke '94] G. Brown & M. Cooke, "Computational auditory scene analysis," Comp. Speech & Lang. 8 (4), 297–336, 1994.
- [Cooke et al. '01] M. Cooke, P. Green, L. Josifovski, A. Vizinho, "Robust automatic speech recognition with missing and uncertain acoustic data," Speech Communication 34, 267-285, 2001.
- [Cooke'06] M. Cooke, "A glimpsing model of speech perception in noise," submitted to JASA.
- [Darwin & Carlyon '95] C. Darwin & R. Carlyon, "Auditory grouping" Handbk of Percep. & Cogn. 6: Hearing, 387–424, Academic Press, 1995.
- [Ellis'96] D. Ellis, "Prediction-Driven Computational Auditory Scene Analysis," Ph.D. thesis, MIT EECS, 1996.
- [Hu & Wang '04] G. Hu and D.L. Wang, "Monaural speech segregation based on pitch tracking and amplitude modulation," IEEE Tr. Neural Networks, 15(5), Sep. 2004.
- [Okuno et al. '99] H. Okuno, T. Nakatani, T. Kawabata, "Listening to two simultaneous speeches," Speech Communication 27, 299–310, 1999.

4 7

COLUMBIA UNIVERSIT

Laboratory for the Recognition and Organization of Speech and Audio

References 2/2

- [Ozerov et al. '05] A. Ozerov, P. Phillippe, R. Gribonval, F. Bimbot, "One microphone singing voice separation using source-adapted models," Worksh. on Apps. of Sig. Proc. to Audio & Acous., 2005.
- [Pearlmutter & Zador '04] B. Pearlmutter & A. Zador, "Monaural Source Separation using Spectral Cues," Proc. ICA, 2005.
- [Parra & Spence '00] L. Parra & C. Spence, "Convolutive blind source separation of non-stationary sources," IEEE Tr. Speech & Audio, 320-327, 2000.
- [Reyes et al. '03] M. Reyes-Gómez, B. Raj, D. Ellis, "Multi-channel source separation by beamforming trained with factorial HMMs," Worksh. on Apps. of Sig. Proc. to Audio & Acous., 13–16, 2003.
- [Roman et al. '02] N. Roman, D.-L. Wang, G. Brown, "Location-based sound segregation," ICASSP, I-1013-1016, 2002.
- [Roweis '03] S. Roweis, "Factorial models and refiltering for speech separation and denoising," EuroSpeech, 2003.
- [Schimmel & Atlas '05] S. Schimmel & L.Atlas, "Coherent Envelope Detection for Modulation Filtering of Speech," ICASSP, I-221-224, 2005.
- [Slaney & Lyon '90] M. Slaney & R. Lyon, "A Perceptual Pitch Detector," ICASSP, 357-360, 1990.
- [Smaragdis '98] P. Smaragdis, "Blind separation of convolved mixtures in the frequency domain," Intl. Wkshp. on Indep. & Artif. I Neural Networks, Tenerife, Feb. 1998.
- [Seltzer et al. '02] M. Seltzer, B. Raj, R. Stern, "Speech recognizer-based microphone array processing for robust hands-free speech recognition," ICASSP, I-897-900, 2002.
- [Varga & Moore '90] A. Varga & R. Moore, "Hidden Markov Model decomposition of speech and noise," ICASSP, 845–848, 1990.
- [Vincent et al. '06] E. Vincent, R. Gribonval, C. Févotte, "Performance measurement in Blind Audio Source Separation." IEEE Trans. Speech & Audio, in press.
- [Yilmaz & Rickard '04] O.Yilmaz & S. Rickard, "Blind separation of speech mixtures via time-frequency masking," IEEE Tr. Sig. Proc. 52(7), 1830-1847, 2004.

Auditory Scene Analysis - Dan Ellis

Laboratory for the Recognition and Organization of Speech and Audio 2006-05-20 - 57/54

COLUMBIA UNIVERSITY