Auditory Scene Analysis

in Humans and Machines
Dan Ellis

Laboratory for "ecognition and  rganization of “peech and " udio
Dept. Electrical Eng., Columbia Univ., NY USA

dpwe@ee.columbia.edu http://labrosa.ee.columbia.edu/

The ASA Problem

Human ASA

Machine Source Separation
Systems & Examples
Concluding Remarks

Lab

Auditory Scene Analysis - Dan Ellis 2006-05-20 - 1/54

Laboratory for the Recognition and
QOrganization of Speech and Audio

CorumsiA [JNIVERSITY
IN THE CITY OF NEW YORK



Auditory Scene Analysis

® Sounds rarely occurs in isolation
O .. but recognizing sources In mixtures Is a problem
o .. for humans and machines

mr-2000-11-02-14:57:43

z -
chan 0 é‘
% 4
chan 1 ;g 5 "
} 0
-20
T -40 .
E -60
chan 3 \c level / dB
=
chan 9 é | |
I_O b 9 time / sec .l.
Auditory Scene Analysis - Dan Ellis 2006-05-20 - 2 /54

Laboratory for the Recognition and
QOrganization of Speech and Audio

CorumsiA [JNIVERSITY
IN THE CITY OF NEW YORK



Sound Mixture Organization

® Goal: recover individual sources from scenes
O. duphcatmg the perceptual effect
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® Problems: competing sources, channel effects

® Dimensionality loss
Lgp ©need additional constraints +
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The Problem of Mixtures

“Imagine two narrow channels dug up from the edge of a
lake, with handkerchiefs stretched across each one.
Looking only at the motion of the handkerchiefs, you are
to answer questions such as: How many boats are there
on the lake and where are they?” (after Bregman’90)

® Received waveform is a mixture
O 2 sensors, N sources - underconstrained
® Undoing mixtures: hearing’s primary goal?

O .. by any means avallable ¥
Lab
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Source Separation Scenarios

® [nteractive voice systems
o human-level understanding Is expected

® Speech prostheses
o crowds: # | complaint of hearing aid users

° analysis
o identifying and isolating sound events

dpwe-2004-09-10-13:15:40

freq / kHz

6 7 8 9.
time / sec

® Unmixing/remixing/enhancement...
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How Can We Separate?

® By between-sensor differences (spatial cues)
o ‘'steer a null’ onto a compact interfering source

® By finding a ‘separable representation’
o spectral! sources are broadband but sparse
o periodicity! maybe — for pitched sounds
o something more signal-specific...

® By inference (based on knowledge/models)
O acoustic sources are redundant

— use part to guess the remainder

Lab

Auditory Scene Analysis - Dan Ellis 2006-05-20 - 6/54

Laboratory for the Recognition and
QOrganization of Speech and Audio

CorumsiA [JNIVERSITY
IN THE CITY OF NEW YORK



Outline

The ASA Problem
Human ASA

O scene analysis
O separation by location
O separation by source characteristics

Machine Source Separation
Systems & Examples
Concluding Remarks
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Lab

Labor: atoryfo rthe Flecognton and
Organization of ch and Audio

Auditory Scene Analysis

® Listeners organize sound mixtures
into discrete perceived sources
based on within-signal cues (audio + ...)
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Perceiving Sources

® Harmonics distinct in ear, but perceived as
One Source (“fused”): 806 X! Detuned harmonic ‘
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® Experimental techniques T
O ask subjects “how many” oo ;
O match attributes e.g. pitch, vowel identrty
Lgb ©brain recordings (EEG "mismatch negativity”) *
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Auditory Scene Analysis

® How do people analyze sound mixtures!?
O break mixture into small elements (in time-freq)
O elements are IN to sources using cues
O sources have aggregate attributes
® Grouping rules (Darwin, Carlyon, ...):
O cues: common onset/offset/modulation,
harmonicity, spatial location, ...

Onset Elements Sources
map \ /
Sound | Frequency >| Harmonicity “|  Grouping | Source
analysis > map “| mechanism | properties
. Spatial / \
map
| Darwin 1996 X
ab (after Darwin )
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Streaming

® Sound event sequences are organized into

streams
O .e. distinct perceived sources
o difficult to make comparisons between streams

® Two-tone streaming experiments:
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o ecological relevance! ¥
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lllusions & Restoration

® [llusion = hearing more than is “there”
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® Need to infer most likely real-world events
O observation equally good match to erther case

o prior likelihood of continurty much higher
Lab T
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Human Performance:

Spat|a| Sepal"atIOn Brungart
® Task: Coordinate Response Measure
o “Ready Baron go to green eight now”
0 256 variants, | 6 speakers
o correct = color and number for “Baron”

® Accuracy as a function of spatial separation:
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Separation by Vocal Differences

® CRM varying the level and voice character
O (same spatial location)
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Varying the Number of Voices

® Two voices OK;

More than two voices harder
O (same spatial origin)

100
&
w20
58
25w
N g
i k]
E 40
@ g
= 9 0= TT
'-'3 - TTIT
o A _ { i : —& TTTT
-18-1512 -9 € -3 0 3 ©6 9 12 15129 6 -3 0 3 6 9 12
Target-to-Masker Ratio (dB) Signal-to-Noise Ratio (dB)

o mix of N voices tends to

Lab

Auditory Scene Analysis - Dan Ellis 2006-05-20 - 15/54

y nition and
QOrganization of Speech and Audio
CorumsiA [JNIVERSITY
IN THE CITY OF NEW YORK



Outline

The ASA Problem
Human ASA

Machine Source Separation
o Independent Component Analysis
o Computational Auditory Scene Analysis
o Model-Based Separation

Systems & Examples
Concluding Remarks
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Scene Analysis Systems

® “Scene Analysis”
O not necessarily separation, recognition, ...
O scene = overlapping objects, ambiguity
® General Framework:

multiple sound Input _ Separgtion Output dis'fingt
sources representation engine descriptions

Evaluation/
control

O distinguish input and output representations
O distinguish engine (algorithm) and

Lab (constraints, “computational model™) +
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Human and Machine Scene Analysis

multiple \ Input Separation / distinct
3 SOuNd : Output —_—
SOHreEs el und = ‘ representation | engine P \\ descriptions

Evaluation/
control

® CASA (e.g. Brown’92):
O Input: Periodicrity, continuity, onset “maps”
O Output: Waveform (or mask)
O Engine: Time-frequency masking
O :"Grouping cues’ from Input
- or:spatial features (Roman, ...)

A
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Human and Machine Scene Analysis

multiple \ Input Separation / distinct
3 SOuNd : Output —_—
SOHreEs el und = ‘ representation | engine P \\ descriptions

Evaluation/
control

|

® |CA (Bell & Sejnowski et seq.):
O Input: waveform (or STFT)
O Output: waveform (or STFT)
O Engine: cancellation
o : statistical iIndependence of outputs
- or energy minimization for beamforming

Lab
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Human and Machine Scene Analysis

multiple \ Input Separation / distinct
3 SOuNd : Output —_—
SOHreEs el und = ‘ representation | engine P \\ descriptions

Evaluation/
control

°
°
® Human Listeners:

O Input: excrtation patterns ...
O Output: percepts ...

O Engine: !
o :find a plausible explanation
I
Lab
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Machine Separation

® Problem: of combinations are not

combinations of
O voice Is easy to characterize when In isolation
o redundancy needed for real-world communication
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Separation Approaches

ICA
* Multi-channel
* Fixed filtering
* Perfect separation
— maybel!

target x

mix

interferencen "

spectro
gram

CASA / Model-based
* Single-channel
* [ime-varying filtering
* Approximate

Separation

A
T X
A

® Very different approaches!

Lab
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Independent Component
Analysis

® Central idea:
Search unmixing space

to maximize independence of outputs
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Mixtures, Scatters, Kurtosis

® of sources become more Gaussian
O can measure e.g. via ‘kurtsosis’ (4th moment)
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|CA Limitations

® Cancellation is very finicky
o hard to get more than ~ |0 dB rejection

Mixture Scatter Kurtosis vs. 0
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® The world is not instantaneous, fixed, linear
o subband models for reverberation
O continuous adaptation

® Needs spatially-compact interfering source

Lab X
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Computational Auditory
Scene Analysis

® Central idea:
Segment time-frequency into sources
based on perceptual grouping cues

Segment Group
input signal discrete
mixture Front end features Objeg:t objects Grouplng Source
(maps) formation rules > groups
T By ] “
j - sBonay | B "
- e

time

O ... principal cue Is harmonicity
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CASA Preprocessing

® Correlogram:a 3rd “periodicity” axis
o envelope of wideband channels follows pitch

short-time
\\(\e _ ' autocorrelation
60® Eﬂ* i
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envelope
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“Weft” Periodic Elements

® Represent harmonics without grouping?

Correlogram Smooth Spectrum

slices

lag —> {

freq —p»

Peri9d Trac[(

period —§»

common-

period i : I
feature : : :
time —#>
O hard to separate multiple prtch tracks
o>
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Time-Frequency (T-F) Masking

® “Local Dominance” assumption
Feal

freq / kHz

o M A O o

Original

level / dB

Mix +
Oracle
Labels

freq / kHz

o M » O o

Oracle-
based
Resynth

0 0.5 1 time / sec 0 0.5 1 time / sec

O oracle masks are remarkably effectivel

O |mix — max(male, female)| < 3dB for ~80% of cells
2006-05-20 - 29/54
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Combining Spatial + T-F Masking

° based on
inter-channel properties

o multiple channels make
CASA-like masks better

® T-F masking after ICA

o cancellation can remove energy within 1-F cells
Lab
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CASA limitations

® Driven by local features
o problems with masking, aperiodic sources...

® [imitations of
o need to identify single-source regions
O cannot undo overlaps — leaves gaps
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Auditory “lllusions™

® How do we explain illusions? .|
o pulsation threshold * e L

O sinewave speech

o phonemic restoration

® Something is providing the missing ( )

pieces ... source models
Lab
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Adding Top-Down Constraints

® Bottom-up CASA: limited to what’s “there”

input signal discrete
m/xture Eront end features Object objects Grouping Source
formation rules groups

® Top-down predictions allow illusions

hypotheses
Noise

Hypothesis

pred/

errors '

| components i\,
[management Periodic ::).(

components [
ct/on

input fSIgnal
m/xture eatures
Front end Compare
& reconcile

Predict
& combine

predicted
I features

o match observations to a "“‘world-model”...

Lab
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Separation vs. Inference

® |deal separation is rarely possible
O 1.e. NO projection can completely remove overlaps

® Overlaps = Ambiguity
O scene analysis = find “most reasonable™ explanation

® Ambiguity can be expressed probabilistically
O |.e. posteriors of sources {S;} given observations X:

P({S;}] X) o P(X[{S;}) P(1S;)

® Better — better inference
0. learn from examples!

e
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Simple Source Separation

® Given models for sources,
find “best” (most likely) states for spectra:

P(X!ilaiz) — N(X;Cil ‘|‘Ci272) model
{i)(2),ix(t) } = argmax;, ;,p(X(t)|i1,i) [nference of

source state
O can include sequential constraints...

O different domains for combining ¢ and defining %
® E.g. stationary noise:

Oriainal h In speech-shaped noise VQ inferred states
riginal speec (mel magsnr = 2.41 dB) (mel magsnr = 3 6 dB)
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Can Models Do CASA!

can learn harmonicity, onset
0 ..to subsume rules/representations of CASA

VQ800 Codebook - Linear d|stort|on measure
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O can capture spatial info too

® (Can also capture sequential structure
O e.g. consonants follow vowels
o .. like people do!?

® But: need source-specific models

.. for every possible source
Lgp ©use model adaptation?
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Separation or Description?

® Are isolated waveforms required!?
o clearly sufficient, but may not be necessary
o not part of perceptual source separation!

® |ntegrate separation with application!?

oeg.
\separation [ ———— :
mix | | tfmasking |' words mix identif | findbest | words
! > + resynthesis [7> ASR ™= — ] target engrgy | words model [
5 1 i} I
| | identify .| speech speech
| | target energy '| models models
| f |
! source |
. knowledge :
Lab o words output = abstract description of signal 2
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Missing Data Recognition

® Speech models p(xIM) are multidimensional...
O need values for all dimensions to evaluate p(e)

® But: can make inferences given O plwn
just a of dimensions x, )

o p(xM) :/p(xk,xu\M)dxu

X
peaey) N pla)

® Hence, missing data recognition:
Present data mask P(x|q) =

L ™ P |9

= ™ - Px2]q)
s ~ P
c Py | @)
£ | st
© ™ Pl | )
. ~ time [l
Lgp ©hard partis finding the mask ( ) X
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The Speech Fragment Decoder

® Match ‘uncorrupt’ i Observation

spectrum to ASR Yo
models using Source
missing data X(f)>
freq

® |oint search for model M and
to maximize:

P(M,S|Y) = P(M)jP(X|M).

Isolated Source Model

e
Lab
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Using CASA cues

P(X|Y,S)
P(X)

P(M,S|Y) = P(M)J'P(X|M)- dX - P(S|Y)

® CASA can help search

o consider only segregations made from CASA
chunks

® (CASA can rate

O construct to reward CASA qualities:

A

I_ O b Frequency Proximity Common Onset  Harmonicity 'l'
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Outline

The ASA Problem
Human ASA
Machine Source Separation

Systems & Examples
o Periodicity-based
Vodel-based

o Music signals

Concluding Remarks

@)

Lab
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Current CASA

® State-of-the-art bottom-up separation
O noise robust pitch track

o label I-F cells by pitch
O extensions to unvoiced transients by onset

Frequency
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Prediction-Driven CASA
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® |dentify objects
in real-world

SCenes

O using “sound
elements”’
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Singing Voice Separation

® Pitch tracking + harmonic separation
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Periodic/Aperiodic Separation

® Harmonic structure + repetition of drums
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“Speech Separation Challenge”

® Mixed and Noisy Speech ASR task
defined by Martin Cooke and Te-Won Lee

o short, grammatically-constrained utterances:

<command:4><color:4><preposition:4><letter:25><number:10><adverb:4>
e.g. "bin white at M 5 soon"

® Results to be presented at Interspeech’06
O http://www.dcs.shef.ac.uk/~martin/SpeechSeparationChallenge.htm

® See also “Statistical And Perceptual Audition”

workshop
o http://www.sapa2006.org/

Lab
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IBM’s “Superhuman” Separation

® Optimal inference on Mixed Spectra
o model each speaker (512 mix GMM) *
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® Applied to Speech Separation Challenge:

Same Gender Speakers

600 800 1000
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o Infer speakers and gain
il | o Reconstruct speech
2 o Recognize as normal...
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Transcription as Separation

® Transcribe piano recordings by
o train SVM detectors for every piano note

O 88 separate detectors, independent smoothing
® Trained on player piano recordings

Bach 847 Disklavier
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® Sse transcription to resynthesize...
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Piano Transcription Results

® Significant improvement from classifier:
o frame-level accuracy results:

Algorithm Errs | False Pos | False Neg | d’
SVM 43.3% 2'7.9% 15.4% 3.44
Klapuri&Ryyninen | 66.6% 28.1% 38.5% 2.71
Marolt 84.6% 36.5% 48.1% 2.35
B False Negatives
f— [ 1 False Positives

120

100 |

O Breakdown
by frame

type:

80 |

60 |-

Classification error %

40 |

20 |

0

# 4t 7 6t
notes presen +

lgb  © http://labrosa.ee.columbia.edu/projects/melody/
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Outline

The ASA Problem

Human ASA

Machine Source Separation
Systems & Examples

Concluding Remarks
o bvaluation

Lab
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Evaluation

® How to measure separation performance!?
o depends what you are trying to do

® SNR!?
O energy (and distortions) are not created equal
o different nonlinear components

® |ntelligibility? et
O rare for nonlinear processing |

to improve intelligibility \

' ' . [ Reduced
O |istening tests expensive \;

>

Y -

Transmission
errors

optimum Agressiveness
o P e r'fo rmance ? 3 ofgprocessing
O separate-then-recognize too simplistic;
ASR needs to accommodate separation I
Lab
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Evaluating Scene Analysis

® Need to establish ground truth
O subjective sources In real sound mixtures?

Subject dpwe f Example city / Part A
MNames Marks
hom(
crash
squeal
homz2
Stop | Go on...
LA
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More Realistic Evaluation

® Real-world speech tasks
o crowded environments
O applications:
communication, command/control, transcription

Personal Audio - Speech + Noise
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Summary & Conclusions

® [isteners do well separating sound mixtures
o using signal cues (location, periodicity)
O using source-property variations

® Machines do less well
o difficult to apply enough constraints
o need to explort signal detall

® Models capture constraints
o |earn from the real world
O adapt to sources

® Separation feasible in certain domains
o describing source properties Is easier

Lab
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Sources / See Also

® NSF/AFOSR Montreal Workshops '03,°04

o www.ebire.org/speechseparation/

o labrosa.ee.columbia.edu/Montreal2004/
o as well as the resulting book...

® Hanse meeting:

o www.lifesci.sussex.ac.uk/home/Chris Darwin/
Hanse/

® Deliang Wang’s ICASSP’04 tutorial

o www.cse.ohio-state.edu/~dwang/presentation.html

® Martin Cooke’s NIPS’02 tutorial
o www.dcs.shef.ac.uk/~martin/nips.ppt 0

Lab
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