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 Central operation:

- continuous sound mixture
- distinct objects & events

 Perceptual impression is very strong
- but hard to ‘see’ in signal
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Bregman'’s lake

“Imagine two narrow channels dug up from the edge of a
lake, with handkerchiefs stretched across each one.
Looking only at the motion of the handkerchiefs, you are
to answer questions such as: How many boats are there
on the lake and where are they?” (after Bregman'90)

e Received waveform is a mixture
- two sensors, N signals ...

 Disentangling mixtures as primary goal
- perfect solution is not possible
- need knowledge-based constraints
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The information in sound
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« A sense of hearing is evolutionarily useful
- gives organisms ‘relevant’ information

« Auditory perception is ecologically grounded
- scene analysis is preconscious (- illusions)

- special-purpose processing reflects
‘natural scene’ properties

- subjective not canonical (ambiguity)
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Key themes for LabROSA

http://labrosa.ee.columbia.edu/

e« Sound organization: construct hierarchy
- at an instant (sources)
- along time (segmentation)

e Scene analysis
- find attributes according to objects
- use attributes to form objects
- ... plus constraints of knowledge

 Exploiting large data sets (the ASR lesson)
- supervised/labeled: pattern recognition
- unsupervised: structure discovery, clustering

 Special cases:
- speech recognition
- other source-specific recognizers

 ...within a‘complete explanation’
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DATA

Automatic Speech Recognition (ASR)

« Standard speech recognition structure:

\)

‘ sound
Feature
calculation
‘ feature vectors
Acoustic model )
parameters o Acoustic
classifier
Word models o
O 0 (0 ‘ phone probabilities
ORVRONE = HMM
Language model [ decoder
p('sat’]'the", ‘cal’) phone / word
p("saw"["the","cat") sequence
Understanding/
application...

o ccld i

5 eh -

5] ﬂﬂ@ﬂjm iy |
e [e]
seventy|

o ‘State of the art’ word-error rates (WERS):
- 2% (dictation) - 30% (telephone conversations)

o« Can use multiple streams...
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Tandem speech recognition
(with Manuel Reyes, ICSI, OGI, CMU)

 Neural net estimates phone posteriors;
but Gaussian mixtures model finer detail

e Combine them!

Hybrid Connectionist-HMM ASR

Conventional ASR (HTK)
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 Train net, then train GMM on net output
- GMM is ignorant of net output ‘meaning’
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Tandem system results: Aurora digits

WER as a function of SNR for various Aurora99 systems
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The Meeting Recorder project
(with ICSI, UW, SR, IBM)

« Microphones in conventional meetings
- for summarization/retrieval/behavior analysis
- informal, overlapped speech

« Data collection (ICSI, UW, ...):
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- 100 hours collected, ongoing transcriptio
- headsets + tabletop + ‘PDA’
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Crosstalk cancellation

« Baseline speaker activity
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« Noisy crosstalk model: m = C[E+n

« Estimate subband C,, from A’s peak energy

- ...Including pure delay (10 ms frames)
- ... then linear inversion
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PDA-based speaker change detection

 Goal: small conference-tabletop device

« Speaker turns from PDA mock-up signals?

pda.aif: excerpt with 512-pt xcorr, 80% max thresh
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« SCD algo on spectral + interaural features
- average spectral + per-channel ITD, Ag
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Music analysis: Lyrics extraction
(with Adam Berenzweig)

 Vocal content is highly salient,
useful for retrieval

« Can we find the singing?
Use an ASR classifier:

speech (trnset #58) music (no vocals #1) singing (vocals #17 + 10.5s)

T

éinging

1 2 time/sec 0 1 2 time / sec 0 1 2 time / sec

« Frame error rate ~20% for segmentation based
on posterior-feature statistics

 Lyric segmentation + transcribed lyrics
- training data for lyrics ASR...
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Music analysis: Structure recovery
(with Rob Turetsky)

e Structure recovery by similarity matrices
(after Foote)
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- similarity distance measure?
- segmentation & repetition structure

- Interpretation at different scales:
notes, phrases, movements

- Incorporating musical knowledge:
‘theme similarity’
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freq / Hz

Alarm sound detection

 Alarm sounds have particular structure
- people ‘know them when they hear them’

e |solate alarms in sound mixtures
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representation of energy in time-frequency
formation of atomic elements
grouping by common properties (onset &c.)

classify by attributes...

 Key: recognize despite background
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The ‘Machine listener’

 Goal: An auditory system for machines
- use same environmental information as people

« Aspects:
- recognize spoken commands (but not others)
- track ‘acoustic channel’ quality (for responses)
- categorize environment (conversation, crowd...
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e Scenarios

I

- personal listener — summary of your day
- autonomous robots: need awareness
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LabROSA Summary
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» Speech recognition
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* Nonspeech recognition

» Object-based structure discovery & learning

e Scene analysis
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