Sound, Mixtures, and Learning

Dan Ellis <dpwe@ee.columbia.edu>

Laboratory for Recognition and Organization of Speech and Audio (LabROSA)

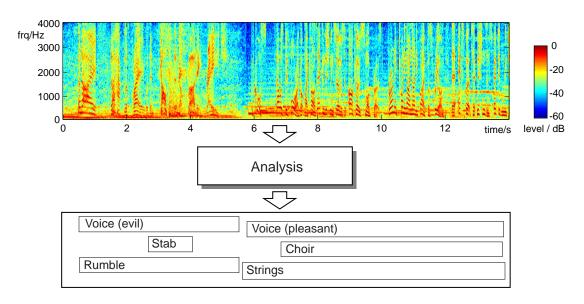
Electrical Engineering, Columbia University http://labrosa.ee.columbia.edu/

Outline

- 1 Auditory Scene Analysis
- Speech Recognition & Mixtures
- 3 Fragment Recognition
- 4 Alarm Sound Detection
- 5 Future Work

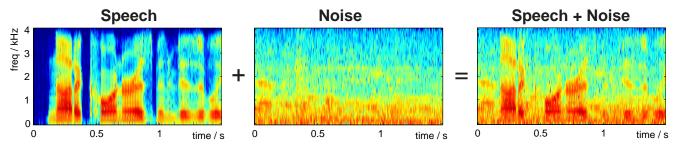
0

Auditory Scene Analysis



- Auditory Scene Analysis: describing a complex sound in terms of high-level sources/events
 - ... like listeners do
- Hearing is ecologically grounded
 - reflects 'natural scene' properties
 - subjective, not absolute

Sound, mixtures, and learning



Sound

- carries useful information about the world
- complements vision

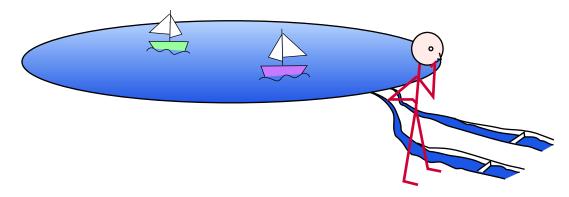
Mixtures

- .. are the rule, not the exception
- medium is 'transparent', sources are many
- must be handled!

Learning

- the 'speech recognition' lesson:
 let the data do the work
- like listeners

The problem with recognizing mixtures

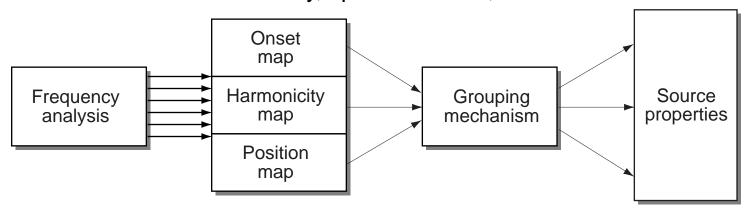


"Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?" (after Bregman'90)

- Received waveform is a mixture
 - two sensors, N signals ... underconstrained
- Disentangling mixtures as the primary goal?
 - perfect solution is not possible
 - need experience-based *constraints*

Human Auditory Scene Analysis (Bregman 1990)

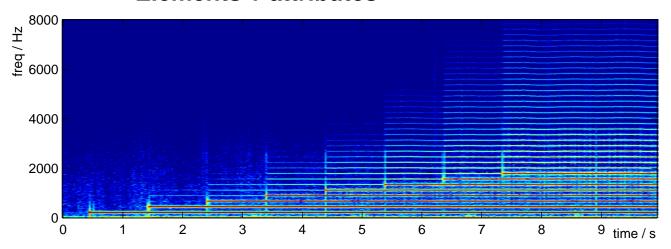
- People hear sounds as separate sources
- How ?
 - break mixture into small elements (in time-freq)
 - elements are grouped in to sources using cues
 - sources have aggregate attributes
- Grouping 'rules' (Darwin, Carlyon, ...):
 - cues: common onset/offset/modulation, harmonicity, spatial location, ...



(after Darwin, 1996)

Cues to simultaneous grouping

Elements + attributes



Common onset

- simultaneous energy has common source

Periodicity

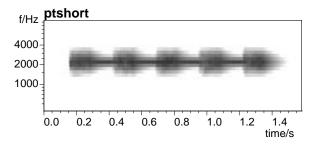
- energy in different bands with same cycle

Other cues

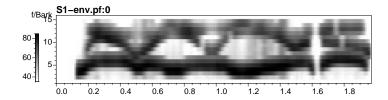
- spatial (ITD/IID), familiarity, ...

Context and Restoration

- Context can create an 'expectation':
 i.e. a bias towards a particular interpretation
 - e.g. auditory 'illusions' = hearing what's not there
- The continuity illusion

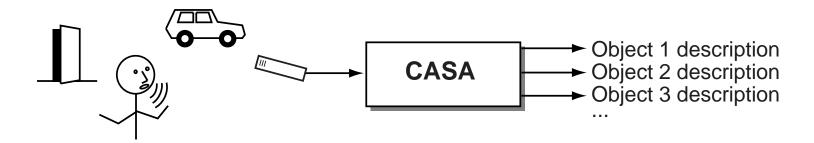


SWS



- duplex perception
- How to model these effects?

Computational Auditory Scene Analysis (CASA)

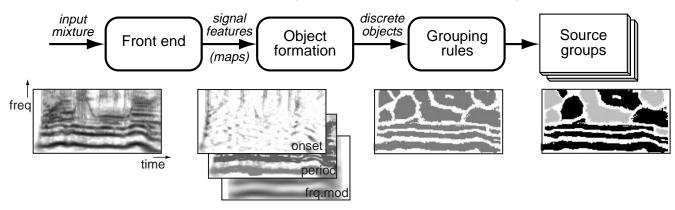


- Goal: Automatic sound organization;
 Systems to 'pick out' sounds in a mixture
 - ... like people do
- E.g. voice against a noisy background
 - to improve speech recognition
- Approach:
 - psychoacoustics describes grouping 'rules'
 - ... just implement them?

The Representational Approach

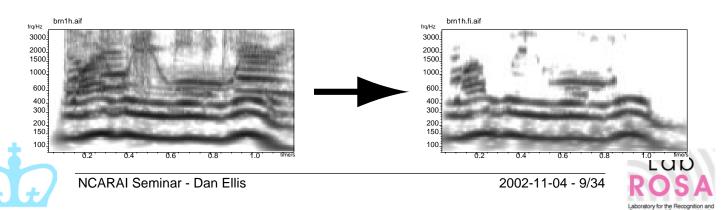
(Brown & Cooke 1993)

Implement psychoacoustic theory



- 'bottom-up' processing
- uses common onset & periodicity cues

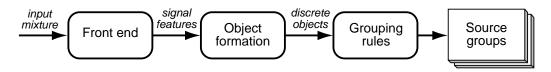
Able to extract voiced speech:



Adding top-down constraints

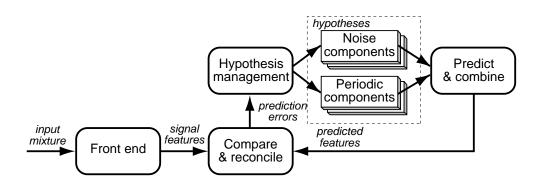
Perception is not *direct* but a *search* for *plausible hypotheses*

Data-driven (bottom-up)...



objects irresistibly appear

vs. Prediction-driven (top-down)



- match observations
 with parameters of a world-model
- need world-model constraints...

Approaches to sound mixture recognition

Recognize combined signal

- 'multicondition training'
- combinatorics...

Separate signals

- e.g. CASA, ICA
- nice, if you can do it

Segregate features into fragments

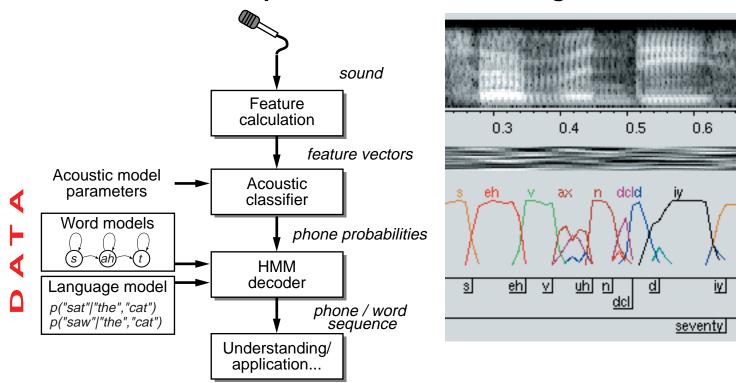
- then missing-data recognition

Outline

- 1 Auditory Scene Analysis
- 2 Speech Recognition & Mixtures
 - standard ASR
 - approaches to speech + noise
- 3 Fragment Recognition
- 4 Alarm Sound Detection
- 5 Future Work

Speech recognition & mixtures

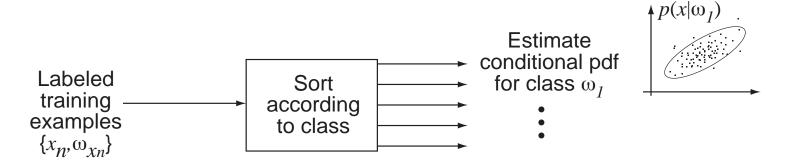
 Speech recognizers are the most successful and sophisticated acoustic recognizers to date



- State of the art' word-error rates (WERs):
 - 2% (dictation) 30% (phone conv'ns)

Learning acoustic models

• Goal: describe p(X|M) with e.g. GMMs



- Separate models for each class
 - generalization as blurring
- Training data labels from:
 - manual annotation
 - 'best path' from earlier classifier (Viterbi)
 - EM: joint estimation of labels & pdfs

Speech + noise mixture recognition

- Background noise
 Biggest problem for current ASR?
- Feature invariance approach:
 Design features to reflect only speech
 - e.g. normalization, mean subtraction
 - one model for clean and noisy speech
- Alternative:
 More complex models of the signal
 - separate models for speech and 'noise'

HMM decomposition

(e.g. Varga & Moore 1991, Roweis 2000)

 Total signal model has independent state sequences for 2+ component sources



- New combined state space $q' = \{q_1 \ q_2\}$
 - new observation pdfs for each combination

$$p(X|q_1, q_2)$$

Outline

- 1 Auditory Scene Analysis
- 2 Speech Recognition & Mixtures
- 3 Fragment Recognition
 - separating signals vs. separating features
 - missing data recognition
 - recognizing multiple sources
- 4 Alarm Sound Detection
- 5 Future Work

Fragment Recognition

(Jon Barker & Martin Cooke, Sheffield)

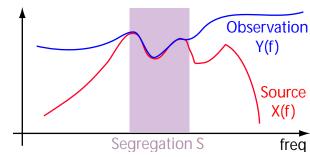
- Signal separation is too hard! Instead:
 - segregate features into partially-observed sources
 - then classify
- Made possible by 'missing data' recognition
 - integrate over uncertainty in observations for optimal posterior distribution
- Goal: Relate clean speech models P(X|M)to speech-plus-noise mixture observations
 - .. and make it tractable

Comparing different segregations

• Standard classification chooses between models *M* to match source features *X*

$$M^* = \underset{M}{\operatorname{argmax}} P(M|X) = \underset{M}{\operatorname{argmax}} P(X|M) \cdot \frac{P(M)}{P(X)}$$

• Mixtures \rightarrow observed features Y, segregation S, all related by P(X|Y,S)



- spectral features allow clean relationship
- Joint classification of model and segregation:

$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$

integral collapses in several cases...

Calculating fragment matches

$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$

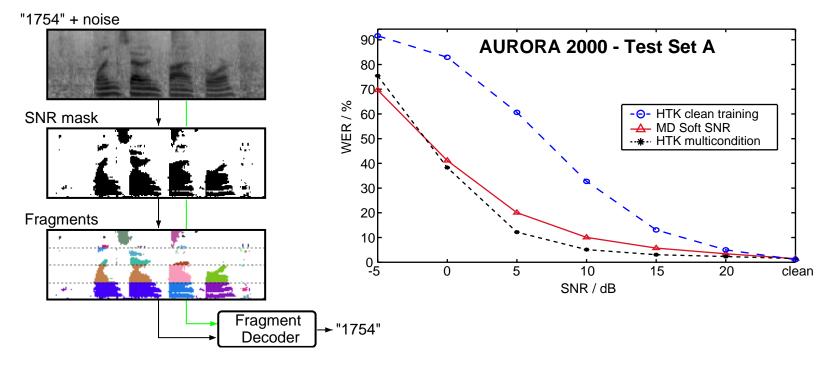
- P(X|M) the clean-signal feature model
- P(X|Y,S)/P(X) is X 'visible' given segregation?
- Integration collapses some channels...
- P(S|Y) segregation inferred from observation
 - just assume uniform, find S for most likely M
 - use extra information in Y to distinguish S's
 e.g. harmonicity, onset grouping

Result:

- probabilistically-correct relation between clean-source models P(X|M) and inferred contributory source P(M,S|Y)

Speech fragment decoder results

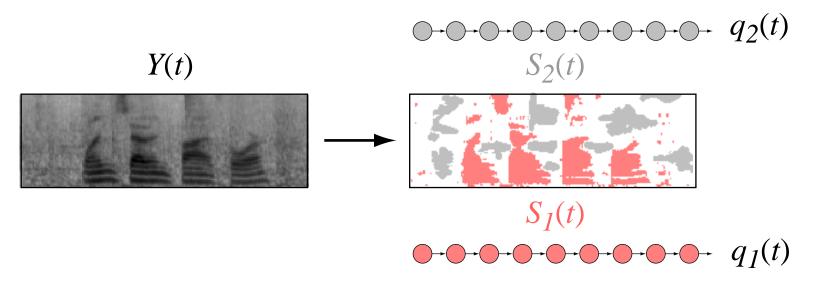
- Simple P(S|Y) model forces contiguous regions to stay together
 - big efficiency gain when searching S space



 Clean-models-based recognition rivals trained-in-noise recognition

Multi-source decoding

Search for more than one source



- Mutually-dependent data masks
- Use e.g. CASA features to propose masks
 - locally coherent regions
- Theoretical vs. practical limits

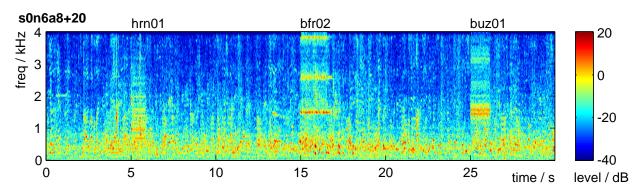
Outline

- 1 Auditory Scene Analysis
- 2 Speech Recognition & Mixtures
- 3 Fragment Recognition
- 4 Alarm Sound Detection
 - sound
 - mixtures
 - learning
- 5 Future Work

Alarm sound detection

Alarm sounds have particular structure

- people 'know them when they hear them'
- clear even at low SNRs



Why investigate alarm sounds?

- they're supposed to be easy
- potential applications...

Contrast two systems:

- standard, global features, P(X|M)
- sinusoidal model, fragments, P(M,S|Y)

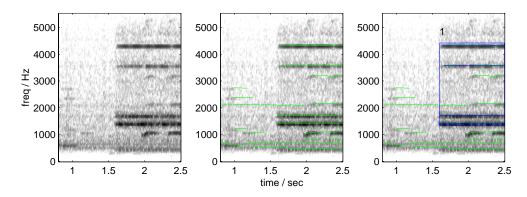
Alarms: Sound (representation)

Standard system: Mel Cepstra

have to model alarms in noise context:
 each cepstral element depends on whole signal

Contrast system: Sinusoid groups

- exploit sparse, stable nature of alarm sounds
- 2D-filter spectrogram to enhance harmonics
- simple magnitude threshold, track growing
- form groups based on common onset

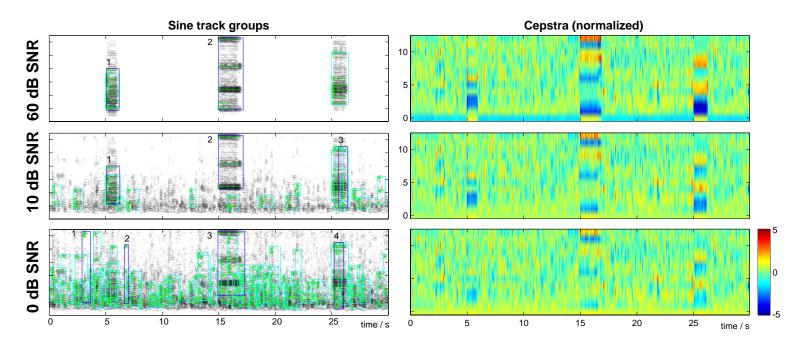


• Sinusoid representation is already *fragmentary*

does not record non-peak energies

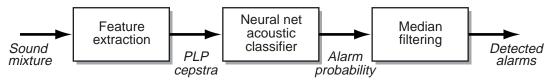
Alarms: Mixtures

- Effect of varying SNR on representations:
 - sinusoid peaks have ~ invariant properties

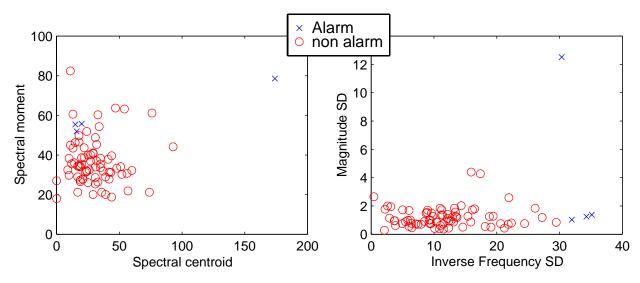


Alarms: Learning

Standard: train MLP on noisy examples

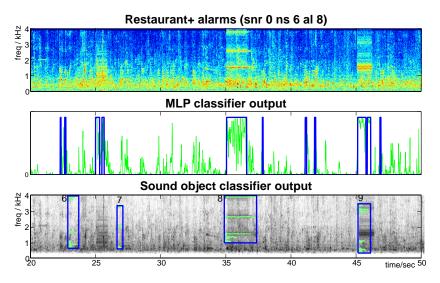


- Alternate: learn distributions of group features
 - duration, frequency deviation, amp. modulation...



- underlying models are clean (isolated)
- recognize in different contexts...

Alarms: Results



 Both systems commit many insertions at 0dB SNR, but in different circumstances:

Noise	Neural net system			Sinusoid model system		
	Del	Ins	Tot	Del	Ins	Tot
1 (amb)	7 / 25	2	36%	14 / 25	1	60%
2 (bab)	5 / 25	63	272%	15 / 25	2	68%
3 (spe)	2 / 25	68	280%	12 / 25	9	84%
4 (mus)	8 / 25	37	180%	9 / 25	135	576%
Overall	22 / 100	170	192%	50 / 100	147	197%

Alarms: Summary

Sinusoid domain

- feature components belong to 1 source
- simple 'segregation' (grouping) model
- alarm model as properties of group
- robust to partial feature observation

Future improvements

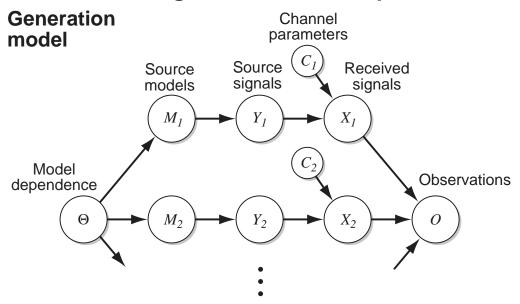
- more complex alarm class models
- exploit repetitive structure of alarms

Outline

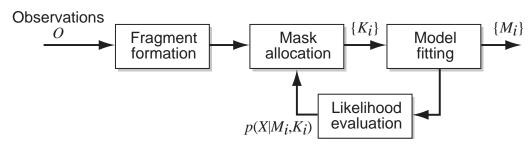
- 1 Auditory Scene Analysis
- 2 Speech Recognition & Mixtures
- 3 Fragment Recognition
- 4 Alarm Sound Detection
- 5 Future Work
 - generative models & inference
 - model acquisition
 - ambulatory audio

Future work

CASA as generative model parameterization:



Analysis structure



Learning source models

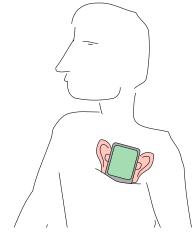
- The speech recognition lesson:
 Use the data as much as possible
 - what can we do with unlimited data feeds?
- Data sources
 - clean data corpora
 - identify near-clean segments in real sound
 - build up 'clean' views from partial observations?

Model types

- templates
- parametric/constraint models
- HMMs
- Hierarchic classification vs. individual characterization...

Personal Audio Applications

- Smart PDA records everything
- Only useful if we have index, summaries
 - monitor for particular sounds
 - real-time description
- Scenarios



- personal listener → summary of your day
- future prosthetic hearing device
- autonomous robots
- Meeting data, ambulatory audio

Summary

Sound

- carries important information

Mixtures

- need to segregate different source properties
- fragment-based recognition

Learning

- information extracted by classification
- models guide segregation

Alarm sounds

- simple example of fragment recognition

General sounds

- recognize simultaneous components
- acquire classes from training data
- build index, summary of real-world sound

