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The Problem of Mixtures

“Imagine two narrow channels dug up from the edge of a 
lake, with handkerchiefs stretched across each one.  
Looking only at the motion of the handkerchiefs, you are 
to answer questions such as: How many boats are there 
on the lake and where are they?”   (after Bregman’90) 
• Received waveform is a mixture

2 sensors, N sources - underconstrained

• Undoing mixtures: hearing’s primary goal?
.. by any means available
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Sound Organization Scenarios
• Interactive voice systems

human-level understanding is expected

• Speech prostheses
crowds: #1 complaint of hearing aid users

• Archive analysis
identifying and isolating sound events

• Unmixing/remixing/enhancement...
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How Can We Separate?
• By between-sensor differences (spatial cues)

‘steer a null’ onto a compact interfering source
the filtering/signal processing paradigm

• By finding a ‘separable representation’
spectral?  sources are broadband but sparse
periodicity?  maybe – for pitched sounds
something more signal-specific...

• By inference (based on knowledge/models)
acoustic sources are redundant
→ use part to guess the remainder
- limited possible solutions
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combination physics source models

Separation vs. Inference
• Ideal separation is rarely possible

i.e. no projection can completely remove overlaps

• Overlaps → Ambiguity
scene analysis = find “most reasonable” explanation

• Ambiguity can be expressed probabilistically
i.e. posteriors of sources {Si} given observations X:

P({Si}| X) ∝ P(X |{Si}) P({Si})

• Better source models → better inference

.. learn from examples?
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A Simple Example
• Source models are codebooks

from separate subspaces
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A Slightly Less Simple Example
• Sources with Markov transitions
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What is a Source Model?
• Source Model describes signal behavior

encapsulates constraints on form of signal
(any such constraint can be seen as a model...)

• A model has parameters
model + parameters 
→ instance

• What is not a source model?
detail not provided in instance
e.g. using phase from original mixture
constraints on interaction between sources
e.g. independence, clustering attributes
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Outline
1.  Mixtures and Models
2.  Human Sound Organization

Auditory Scene Analysis
Using source characteristics
Illusions

3.  Machine Sound Organization
4.  Research Questions
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Auditory Scene Analysis

• How do people analyze sound mixtures? 
break mixture into small elements (in time-freq) 
elements are grouped in to sources using cues 
sources have aggregate attributes 

• Grouping rules (Darwin, Carlyon, ...): 
cues: common onset/modulation, harmonicity, ...

• Also learned “schema” (for speech etc.)

Frequency
analysis

Sound

Elements Sources

Grouping
mechanism

Onset
map

Harmonicity
map

Spatial
map

Source
properties

(after Darwin
1996)

Bregman’90
Darwin & Carlyon’95
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Perceiving Sources
• Harmonics distinct in ear, but perceived as 

one source (“fused”):

depends on common onset
depends on harmonics

• Experimental techniques
ask subjects “how many”
match attributes e.g. pitch, vowel identity
brain recordings (EEG “mismatch negativity”)
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Auditory “Illusions”
• How do we explain illusions?

pulsation threshold

sinewave speech

phonemic restoration

• Something is providing the 
missing (illusory) pieces ... source models
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Human Speech Separation
• Task: Coordinate Response Measure

“Ready Baron go to green eight now”
256 variants, 16 speakers
correct = color and number for “Baron”

• Accuracy as a function of spatial separation:

A, B same speaker                  o Range effect

13
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Separation by Vocal Differences
• CRM varying the level and voice character

energetic vs. informational masking
more than pitch .. source models
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Outline
1.  Mixtures and Models
2.  Human Sound Organization
3.  Machine Sound Organization

Computational Auditory Scene Analysis
Dictionary Source Models

4.  Research Questions
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Source Model Issues
• Domain

parsimonious expression of constraints
nice combination physics

• Tractability
size of search space
tricks to speed search/inference

• Acquisition
hand-designed vs. learned
static vs. short-term

• Factorization
independent aspects
hierarchy & specificity

16
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Computational Auditory 
Scene Analysis

• Central idea:
Segment time-frequency into sources
based on perceptual grouping cues

... principal cue is harmonicity
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Brown & Cooke’94
Okuno et al.’99
Hu & Wang’04 ...
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CASA limitations
• Limitations of T-F masking

cannot undo overlaps – leaves gaps

• Driven by local features
limited model scope ➝ no inference or illusions

• Does not learn from data
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Basic Dictionary Models
• Given models for sources, 

find “best” (most likely) states for spectra:

can include sequential constraints...
different domains for combining c and defining 

• E.g. stationary noise:
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Deeper Models: Iriquois
• Optimal inference on mixed spectra

speaker-specific models
(e.g. 512 mix GMM)
Algonquin inference

• .. for Speech Separation Challenge (Cooke/Lee’06)
exploit grammar constraints - higher-level dynamics

20

Kristjansson, Hershey 
et al. ’06

HIGH RESOLUTION SIGNAL RECONSTRUCTION

Trausti Kristjansson

Machine Learning and Applied Statistics
Microsoft Research

traustik@microsoft.com

John Hershey

University of California, San Diego
Machine Perception Lab

jhershey@cogsci.ucsd.edu

ABSTRACT

We present a framework for speech enhancement and ro-
bust speech recognition that exploits the harmonic structure
of speech. We achieve substantial gains in signal to noise ra-
tio (SNR) of enhanced speech as well as considerable gains
in accuracy of automatic speech recognition in very noisy
conditions.

The method exploits the harmonic structure of speech
by employing a high frequency resolution speech model in
the log-spectrum domain and reconstructs the signal from
the estimated posteriors of the clean signal and the phases
from the original noisy signal.

We achieve a gain in signal to noise ratio of 8.38 dB for
enhancement of speech at 0 dB. We also present recognition
results on the Aurora 2 data-set. At 0 dB SNR, we achieve
a reduction of relative word error rate of 43.75% over the
baseline, and 15.90% over the equivalent low-resolution al-
gorithm.

1. INTRODUCTION

A long standing goal in speech enhancement and robust
speech recognition has been to exploit the harmonic struc-
ture of speech to improve intelligibility and increase recog-
nition accuracy.

The source-filter model of speech assumes that speech
is produced by an excitation source (the vocal cords) which
has strong regular harmonic structure during voiced phonemes.
The overall shape of the spectrum is then formed by a fil-
ter (the vocal tract). In non-tonal languages the filter shape
alone determines which phone component of a word is pro-
duced (see Figure 2). The source on the other hand intro-
duces fine structure in the frequency spectrum that in many
cases varies strongly among different utterances of the same
phone.

This fact has traditionally inspired the use of smooth
representations of the speech spectrum, such as the Mel-
frequency cepstral coefficients, in an attempt to accurately
estimate the filter component of speech in a way that is in-
variant to the non-phonetic effects of the excitation[1].

There are two observations that motivate the consider-
ation of high frequency resolution modelling of speech for
noise robust speech recognition and enhancement. First is
the observation that most noise sources do not have har-
monic structure similar to that of voiced speech. Hence,
voiced speech sounds should be more easily distinguish-
able from environmental noise in a high dimensional signal
space1.
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Fig. 1. The noisy input vector (dot-dash line), the corre-
sponding clean vector (solid line) and the estimate of the
clean speech (dotted line), with shaded area indicating the
uncertainty of the estimate (one standard deviation). Notice
that the uncertainty on the estimate is considerably larger in
the valleys between the harmonic peaks. This reflects the
lower SNR in these regions. The vector shown is frame 100
from Figure 2

A second observation is that in voiced speech, the signal
power is concentrated in areas near the harmonics of the
fundamental frequency, which show up as parallel ridges in

1Even if the interfering signal is another speaker, the harmonic structure
of the two signals may differ at different times, and the long term pitch
contour of the speakers may be exploited to separate the two sources [2].
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Faster Search: Fragment Decoder

• Match ‘uncorrupt’ 
spectrum to ASR 
models using 
missing data 
recognition
easy if you know the 
segregation mask S

• Joint search for model M and segregation S 
to maximize:

Barker et al. ’05
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CASA in the Fragment Decoder

• CASA can help search
consider only segregations made from CASA 
chunks

• CASA can rate segregation
construct P(S|Y) to reward CASA qualities:
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(Pitch) Factored Dictionaries

• Separate representations for 
“source” (pitch) and “filter”
NM codewords 
from N+M entries
but: overgeneration...

• Faster search
direct extraction of pitches
immediate separation of 
(most of) spectra

23
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Discriminant Models for Music
• Transcribe piano recordings by classification

train SVM detectors for every piano note
88 separate detectors, independent smoothing

• Trained on player piano recordings

• Can resynthesize from transcript...

24
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Piano Transcription Results

• Significant improvement from classifier:
frame-level accuracy results:

Breakdown
by frame
type:

25

Table 1: Frame level transcription results.

Algorithm Errs False Pos False Neg d′

SVM 43.3% 27.9% 15.4% 3.44

Klapuri&Ryynänen 66.6% 28.1% 38.5% 2.71

Marolt 84.6% 36.5% 48.1% 2.35

• Overall Accuracy Acc: Overall accuracy is a frame-level version of the metric
proposed by Dixon in [Dixon, 2000] defined as:

Acc =
N

(FP + FN + N)
(3)

where N is the number of correctly transcribed frames, FP is the number of

unvoiced frames UV transcribed as voiced V , and FN is the number of voiced

frames transcribed as unvoiced.

• Error Rate Err: The unbounded error rate is defined as:

Err =
FP + FN

V
(4)

Additionally, we define the false positive rate FPR and false negative rate FNR
as FP/V and FN/V respectively.

• Discriminability d′: The discriminability is a measure of the sensitivity of a
detector that attempts to factor out the overall bias toward labeling any frame

as voiced (which can move both hit rate and false alarm rate up and down in

tandem). It converts the hit rate and false alarm into standard deviations away

from the mean of an equivalent Gaussian distribution, and reports the difference

between them. A larger value indicates a detection scheme with better discrimi-

nation between the two classes [Duda et al., 2001]

d′ = |Qinv(N/V )−Qinv(FP/UV )|. (5)

As displayed in Table 1, the discriminative model provides a significant perfor-

mance advantage on the test set with respect to frame-level transcription accuracy.

This result highlights the merit of a discriminative model for candidate note identi-

fication. Since the transcription problem becomes more complex with the number of

simultaneous notes, we have also plotted the frame-level classification accuracy versus

the number of notes present for each of the algorithms in the left panel of Figure 4, and

the classification error rate composition with the number of simultaneously occurring

notes for the proposed algorithm is displayed in right panel. As expected, there is an

inverse relationship between the number of notes present and the proportional contri-

bution of insertion errors to the total error rate. However, the performance degredation

of the proposed is not as significant as the harmonic-based models.
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Outline
1.  Mixtures & Models
2.  Human Sound Organization
3.  Machine Sound Organization
4.  Research Questions

Task and Evaluation 
Generic vs. Specific
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Task & Evaluation
• How to measure separation performance?

depends what you are trying to do

• SNR?
energy (and distortions) are not created equal
different nonlinear components [Vincent et al. ’06]

• Human Intelligibility?
rare for nonlinear processing 
to improve intelligibility
listening tests expensive

• ASR performance?
separate-then-recognize too simplistic;
ASR needs to accommodate separation
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How Many Models?
• More specific models ➝ better separation

need individual dictionaries for “everything”??

• Model adaptation and hierarchy
speaker adapted models : 
base + parameters

extrapolation beyond normal

generic-specific: pitched ➝ piano ➝ this piano

• Time scales of model acquisition
innate/evolutionary (hair-cell tuning)
developmental (mother tongue phones) 
dynamic - the “slung mugs” effect; Ozerov
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Summary & Conclusions
• Listeners do well separating sound mixtures

using signal cues (location, periodicity)
using source-property variations

• Machines do less well
difficult to apply enough constraints
need to exploit signal detail

• Models capture constraints
learn from the real world
adapt to sources

• Separation feasible only sometimes
describing source properties is easier
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