Minimal-Impact Personal Audio Archives

Dan Ellis, Keansub Lee, Jim Ogle

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA

dpwe@ee.columbia.edu

- "Personal Audio" Archives
- 2. Segmenting & Clustering
- 3. Speech Detection
- 4. Repeated Events
- 5. Future

Personal Audio Archives

- Easy to record everything you hear
 - **o** < 2GB / week @ 64 kbps
- Hard to find anything
 - how to scan?
 - how to visualize?
 - how to index?
- Need automatic analysis
- Need minimal impact

Information in Audio

Long-duration recordings contain info on:

- Olocation type (restaurant, street, ...) and specific
- o activity talking, walking, typing
- opeople generic (2 males), specific (Chuck & John)
- O spoken content ... maybe

but not:

- what people and things "looked like"
- o day/night
- ogaze, posture, motion, ...

Applications

- Automatic appointment-book history
 - fills in when & where of movements
- "Life statistics"
 - how long did I spend in meetings this week?
 - most frequent conversations
 - favorite phrases?
- Retrieving details
 - what exactly did I promise?
 - o privacy issues...
- Nostalgia
- ... or what?

2. Segmentation & Clustering

- Top-level structure for long recordings:
 Where are the major boundaries?
 - e.g. for diary application
 - support for manual browsing
- Length of fundamental time-frame
 - 60s rather than 10ms?
 - background more important than foreground
 - average out uncharacteristic transients
- Perceptually-motivated features
 - .. so results have perceptual relevance
 - obroad spectrum + some detail

Features

- Capture both average and variation
- Capture a little more detail in subbands...

BIC Segmentation Results

- Evaluate: 62 hr hand-marked dataset
 - 8 days, I 39 segments, I 6 categories
 - measure Correct Accept % @ False Accept = 2%:

Feature Co	rrect Accept
------------	--------------

<u>-</u>
80.8%
81.1%
81.6%
84.0%
83.6%
73.6%

Segment Clustering

- Daily activity has lots of repetition: Automatically cluster similar segments
 - o 'affinity' of segments as KL2 distances

Clustering Results

- Clustering of automatic segments gives 'anonymous classes'
 - BIC criterion to choose number of clusters
 - make best correspondence to 16 GT clusters

• Frame-level scoring gives ~70% correct

• errors when same 'place' has multiple ambiences

3. Speech Detection

- Speech emerges as most interesting content
- Just identifying speech would be useful
 o goal is speaker identification / labeling
- Lots of background noise
 conventional Voice Activity Detection inadequate
- Insight: Listeners detect pitch track (melody)
 - O look for voice-like periodicity in noise

Voice Periodicity Enhancement

Noise-robust subband autocorrelation

Subtract local average

• suppresses steady background e.g. machine noise

- 15 min test set; 88% acc (79% w/o enhancement)
- also for enhancing speech (harmonic filtering)

4. Repeating Events

- Recurring sound events can be informative
 - indicate similar circumstance...
 - but: define "event" sound organization
 - o define "recurring event" how similar?
 - .. and how to find them tractable?
- Idea: Use hashing (fingerprints)
 - index points to other occurrences of each hash;
 intersection of hashes points to match
 - much quicker search
 - use a fingerprint insensitive to background?

Shazam Fingerprints

• Prominent spectral onsets are landmarks; Use relations $\{f_1, f_2, \Delta t\}$ as hashes

o intrinsically robust to background noise

Exhaustive Search for Repeats

- More selective hashes →
 - few hits required to confirm match (faster; better precision)
 - but less robust to backgound (reduce recall)
- Works well when exact structure repeats
 - recorded music, electronic alerts
 - ono good for "organic" sounds e.g. garage door

5. Future: Browsing Tools

- Browsing / Diary interface
 - O links to other information (diary, email, photos)
 - osynchronize with note taking? (Stifelman & Arons)
- Release Tools + "how to" for capture

Personal Audio Archives - Ellis, Lee, Ogle

Laboratory for the Recognition and Organization of Speech and Audio 2006-07-19 p. 15/18

Future: Speech Recognition

- Most audio is too noisy for standard ASR
 - o actually reassuring for privacy issues
- But... similar to "Meeting Recordings"
 - NIST "distant microphone" conditions

- Speech enhancement directional filtering
 - 2 channels a big improvement over one
 - ... use a more special-purpose directional mic?

Privacy and Security

- Recordings are controversial
 - privacy expectations: speech should be ephemeral?
 - o "Oops button", delayed review (Roy)
 - o subpoenas... (Golubchik)
- Access to recordings is very sensitive
 - O... but preservation is important too
- Approaches
 - Odon't store intelligible audio .. but lessens utility
 - maybe store ASR output?
 - split and store on multiple machines
 - tiered, distributed trust/access protocols
- Big issue!

Conclusions

- "Personal Audio" is easy & cheap to collect
 - but is it any use?
- Segmentation/clustering works well
- Voice detection in noise is harder
 - oprospects for speaker identification
- Hashing to find arbitrary repeating events
- Tools distribution as a goal

