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Sound Content Analysis

 

• Sound understanding: the key challenge

 

- what listeners do
- understanding = abstraction

 

• Applications

 

- indexing/retrieval
- robots
- prostheses
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The problem with recognizing mixtures

 

“Imagine two narrow channels dug up from the edge of a 
lake, with handkerchiefs stretched across each one.  
Looking only at the motion of the handkerchiefs, you are 
to answer questions such as: How many boats are there 
on the lake and where are they?”   

 

(after Bregman’90)

 

• Auditory Scene Analysis: describing a complex 
sound in terms of high-level sources/events

 

- ... like listeners do

 

• Hearing is ecologically grounded

 

- reflects natural scene properties = constraints
- subjective, not absolute
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Auditory Scene Analysis

 

 

 

(Bregman 1990)

 

• How do people analyze sound mixtures?

 

- break mixture into small 

 

elements

 

 (in time-freq)
- elements are 

 

grouped

 

 in to sources using 

 

cues

 

- sources have aggregate 

 

attributes

 

• Grouping ‘rules’ (Darwin, Carlyon, ...):

 

- cues: common onset/offset/modulation, 
harmonicity, spatial location, ...

Frequency
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(after Darwin, 1996)
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Cues to simultaneous grouping

 

• Elements + attributes

• Common onset

 

- simultaneous energy has common source

 

• Periodicity

 

- energy in different bands with same cycle

 

• Other cues

 

- spatial (ITD/IID), familiarity, ...

 

• But: Context ...
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Outline

 

Sound Content Analysis 

Recognizing sounds

 

- Clean speech
- Speech-in-noise
- Nonspeech

 

Organizing mixtures

Accessing large datasets

Music Information Retrieval
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Recognizing Sounds: Speech

 

• Standard speech recognition structure:

• How to handle additive noise?

 

- just train on noisy data: ‘multicondition training’
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How ASR Represents Speech

 

• Markov model structure: states + transitions

• A generative model

 

- but not a good speech generator!

- only meant for inference of 
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General Audio Recognition

 

(with Manuel Reyes)

 

• Searching audio databases

 

- speech .. use ASR
- text annotations .. search them
- sound effects library?

 

• e.g. Muscle Fish “SoundFisher” browser

 

- define multiple ‘perceptual’ feature dimensions
- search by proximity in (weighted) feature space

- features are global for each soundfile,
no attempt to separate mixtures 
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Audio Recognition: Results

 

• Musclefish corpus

 

- most commonly reported set

 

• Features

 

- MFCC, brightness, bandwidth, pitch ...
- no temporal structure

 

• Results: 

 

- 208 examples, 16 classes

 

Global features

 

: 41% corr

 

HMM models

 

: 81% corr.
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What are the HMM states?

 

• No sub-units defined for nonspeech sounds

• Final states depend structure, initialization

 

- number of states
- initial clusters / labels / transition matrix
- EM update objective

 

• Have ideas of what we’d like to get

 

- investigate features/initialization to get there
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Alarm sound detection

 

(Ellis 2001)

 

• Alarm sounds have particular structure

 

- people ‘know them when they hear them’
- clear even at low SNRs

 

• Why investigate alarm sounds?

 

- they’re supposed to be easy
- potential applications...

 

• Contrast two systems:

 

- standard, global features, 

 

P

 

(

 

X

 

|

 

M

 

)

 

- sinusoidal model, fragments, 

 

P(M,S|Y)

time / s

hrn01 bfr02 buz01

level / dB

fr
eq

 / 
kH

z

0 5 10 15 20 25
0

1

2

3

4

-40

-20

0

20
s0n6a8+20



Dan Ellis Sound, Mixtures & Learning 2003-07-21 - 13

Alarms: Results

• Both systems commit many insertions at 0dB 
SNR, but in different circumstances:
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Outline

Sound Content Analysis

Recognizing sounds

Organizing mixtures
- Auditory Scene Analysis
- Parallel model inference

Accessing large datasets

Music Information Retrieval
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Organizing mixtures:
Approaches to handling overlapped sound

• Separate signals, then recognize
- e.g. CASA, ICA
- nice, if you can do it

• Recognize combined signal
- ‘multicondition training’
- combinatorics..

• Recognize with parallel models
- full joint-state space?
- or: divide signal into fragments, 

then use missing-data recognition

3
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Computational Auditory Scene Analysis:
The Representational Approach

(Cooke & Brown 1993)

• Direct implementation of psych. theory

- ‘bottom-up’ processing
- uses common onset & periodicity cues

• Able to extract voiced speech:
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Adding top-down constraints

Perception is not direct
but a search for plausible hypotheses

• Data-driven (bottom-up)...

- objects irresistibly appear
vs. Prediction-driven (top-down)

- match observations 
with parameters of a world-model

- need world-model constraints...
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Prediction-Driven CASA
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Segregation vs. Inference

• Source separation 
requires attribute separation
- sources are characterized by attributes

(pitch, loudness, timbre + finer details)
- need to identify & gather different attributes for 

different sources ... 

• Need representation that segregates attributes
- spectral decomposition
- periodicity decomposition

• Sometimes values can’t be separated
- e.g. unvoiced speech
- maybe infer factors from probabilistic model?

- or: just skip those values, 
infer from higher-level context

- do both: missing-data recognition

p O x y, ,( ) p x y, O( )→
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Missing Data Recognition

• Speech models p(x|m) are multidimensional...
- i.e. means, variances for every freq. channel
- need values for all dimensions to get p(•)

• But: can evaluate over a 
subset of dimensions xk

• Hence, 
missing data recognition:

- hard part is finding the mask (segregation)
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Comparing different segregations

• Standard classification chooses between 
models M to match source features X

• Mixtures → observed features Y, segregation S, 
all related by 

- spectral features allow clean relationship

• Joint classification of model and segregation:

- probabilistic relation of models & segregation

M∗ P M X( )
M

argmax P X M( )
P M( )
P X( )
--------------⋅

M
argmax = =

P X Y S,( )

freq

Observation
Y(f )

Segregation S

Source
X(f )

P M S Y,( ) P M( ) P X M( )
P X Y S,( )

P X( )
-------------------------⋅ Xd∫ P S Y( )⋅=
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Multi-source decoding

• Search for more than one source

• Mutually-dependent data masks

• Use e.g. CASA features to propose masks
- locally coherent regions

• Lots of issues in models, representations, 
matching, inference...

Y(t)

S1(t)
q1(t)

S2(t)
q2(t)
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Outline

Sound Content Analysis

Recognizing sounds

Organizing mixtures

Accessing large datasets
- Spoken documents
- The Listening Machine
- Music preference modeling

Music Information Retrieval
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Accessing large datasets:
The Meeting Recorder Project

(with ICSI, UW, IDIAP, SRI, Sheffield)

• Microphones in conventional meetings
- for summarization / retrieval / behavior analysis
- informal, overlapped speech

• Data collection (ICSI, UW, IDIAP, NIST):

- ~100 hours collected & transcribed

• NSF ‘Mapping Meetings’ project

4
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Meeting IR tool

• IR on (ASR) transcripts from meetings

- ASR errors have limited impact on retrieval
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Speaker Turn detection
(Huan Wei Hee, Jerry Liu)

• Acoustic: 
Triangulate tabletop mic timing differences
- use normalized peak value for confidence

• Behavioral: Look for patterns of speaker turns
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Speech/nonspeech detection
(Williams & Ellis 1999)

• ASR run over entire soundtracks?
- for nonspeech, result is nonsense

• Watch behavior of speech acoustic model:
- average per-frame entropy
- ‘dynamism’ - mean-squared 1st-order difference

• 1.3% error on 2.5 second speech-music testset
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The Listening Machine

• Smart PDA records everything

• Only useful if we have index, summaries
- monitor for particular sounds
- real-time description

• Scenarios

- personal listener → summary of your day
- future prosthetic hearing device
- autonomous robots

• Meeting data, ambulatory audio
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Personal Audio

• LifeLog / MyLifeBits / 
Remembrance Agent:
Easy to record everything you 
hear

• Then what?
- prohibitively time consuming to 

search
- but .. applications if access easier

• Automatic content analysis / indexing...
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Outline

Sound Content Analysis

Recognizing sounds

Organizing mixtures

Accessing large datasets

Music Information Retrieval
- Anchor space
- Playola browser
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Music Information Retrieval

• Transfer search concepts to music?
- “musical Google”
- finding something specific / vague / browsing
- is anything more useful than human annotation?

• Most interesting area:  finding new music
- is there anything on mp3.com that I would like?
- audio is only information source for new bands

• Basic idea:
Project music into a space where 
neighbors are “similar”

• Also need models of personal preference
- where in the space is the stuff I like
- relative sensitivity to different dimensions

• Evaluation problems
- requires large, shareable music corpus!

5
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Artist Classification
(Berenzweig et al. 2001)

• Artists’ oeuvres as similarity-sets

• Train MLP to classify frames among 21 artists

• Using (detected) voice segments:
Song-level accuracy improves 56.7% → 64.9%
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Artist Similarity

• Recognizing work from each artist is all very well...

• But: what is 
similarity between 
artists?

- pattern recognition 
systems give a 
number...

• Need subjective ground truth:
Collected via web site

www.musicseer.com

• Results:
- 1,000 users, 22,300 judgments
   collected over 6 months
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Music similarity from Anchor space

• A classifier trained for one artist (or genre) 
will respond partially to a similar artist

• Each artist evokes a particular pattern of 
responses over a set of classifiers

• We can treat these classifier outputs as a new 
feature space in which to estimate similarity

• “Anchor space” reflects subjective qualities?
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Anchor space visualization

• Comparing 2D projections of per-frame feature 
points in cepstral and anchor spaces:

- each artist represented by 5GMM
- greater separation under MFCCs!
- but: relevant information?
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Playola interface ( www.playola.org )

• Browser finds closest matches to single tracks 
or entire artists in anchor space

• Direct manipulation of anchor space axes

http://www.playola.org/
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Evaluation

• Are recommendations good or bad?

• Subjective evaluation is the ground truth
- .. but subjects aren’t familiar with the bands 

being recommended
- can take a long time to decide if a 

recommendation is good

• Measure match to other similarity judgments
- e.g. musicseer data:

Top rank agreement
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Summary

• Sound
- .. contains much, valuable information at many 

levels
- intelligent systems need to use this information

• Mixtures
- .. are an unavoidable complication when using 

sound
- looking in the right time-frequency place to find 

points of dominance

• Learning
- need to acquire constraints from the 

environment
- recognition/classification as the real task
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LabROSA Summary
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•  Broadcast
•  Movies
•  Lectures

•  Meetings
•  Personal recordings
•  Location monitoring

•  Speech recognition
•  Speech characterization
•  Nonspeech recognition

• Object-based structure discovery & learning

•  Scene analysis
•  Audio-visual integration
•  Music analysis

•  Structuring
•  Search
•  Summarization
•  Awareness
•  Understanding
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Extra Slides
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Independent Component Analysis (ICA)
(Bell & Sejnowski 1995 et seq.)

• Drive a parameterized separation algorithm to 
maximize independence of outputs

• Advantages:
- mathematically rigorous, minimal assumptions
- does not rely on prior information from models

• Disadvantages:
- may converge to local optima...
- separation, not recognition
- does not exploit prior information from models
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