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Personal Audio Archives

® Easy to record everything you hear
0 <2GB / week @ 64 kbps

® Hard to find anything

@)
O
@)

how to scan?!
how to visualize?

how to Index!?

® Need automatic analysis

® Need minimal impact

Lab
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Personal Audio Applications

® Automatic appointment-book history
o fills in when & where of movements

® “Life statistics”
O how long did | spend in meetings this week!
O most frequent conversations
O favorite phrases?

® Retrieving details
O what exactly did | promise!?
O privacy ISSUES...

® Nostalgia

®
Lab
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Consumer Video

® Short video clips as the

evolution of snapshots

O |0-60 sec, one location,
no editing
O !

® More information for indexing...
O video + audio
O foreground + background

Lab
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Information in Audio

® Environmental recordings contain info on:
O |ocation — type (restaurant, street, ...) and specific
O activity — talking, walking, typing
O people — generic (2 males), specific (Chuck & John)

o .. Maybe

® but not:
O what people and things “looked like™
O day/night ...

O ...except when correlated with audible features

o>
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A Brief History of Audio Processing

® Environmental sound classification

draws on earlier sound classification work
O as well as

Speech Recognition
> d Source Separation

\ - ~—_
Speaker ID — One channel Multi-channel
GMM HMMs N

M |- _
Music Audio ode based Cue-based
Genre & Artist ID \

Sountrack & Enwronmental
Recognition
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Segmentation & Clustering

® Top-level structure for long recordings:
Where are the major boundaries?
O e.g. for diary application
O support for manual browsing

® | ength of fundamental time-frame
O 60s rather than |0Oms!

O background more important than foreground
O average out uncharacteristic

® Perceptually-motivated features
O ..so results have perceptual relevance

O broad spectrum + some detall
Lab
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MFCC Features

® Need “timbral”’ features:
Mel-Frequency Cepstral Coeffs (MFCCs)
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Long-Duration Features
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® Capture both average and variation
® Capture a little more detail in subbands...

o>
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Lab

Spectral Entropy

® Auditory spectrum: A[n, j] =

Nr
E w ij [n ) k]
k=0

® Spectral entropy = ‘peakiness’ of each band:
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BIC Segmentation

® BIC (Bayesian Info. Crit.) compares models:
log “ RG22 5 log(N)A#(M)

L(X;Mo)
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BIC Segmentation Results

® Evaluate: 62 hr hand-marked dataset
O 8 days, |39 segments, |6 categories
O measure Correct Accept % @ False Accept = 2%:

Feature Correct Accept
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Segment Clustering

® Diaily activity has lots of repetition:
Automatically cluster similar segments

O ‘affinity’ of segments as KL2 distances
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Spectral Clustering

® Eigenanalysis of affinity matrix: A = UeSeV'’

Affinity Matrix SVD components: uk*skk*Vk'
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Clustering Results

® Clustering of automatic segments gives

‘anonymous classes’
O BIC criterion to choose number of clusters

O make best correspondence to |16 GT clusters

Audia
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® Frame-level scoring gives ~70% correct

Lab O errors when same ‘place’ has multiple ambiences 2~
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Lab

Laboratory for the Recognition and
QOrganization of Speech and Audio

Browsing Interface

® Browsing / Diary interface
O |inks to other information (diary, email, photos)
O synchronize with note taking?
O audio

® Release Tools + “how to’” for capture
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Special-Purpose Detectors: Speech

® Speech emerges as most interesting content

® |ust identifying speech would be useful
O goal Is speaker identification / labeling

® | ots of background
O conventional Voice Activity Detection inadequate

® |nsight: Listeners detect pitch track (melody)
O |ook for voice-like periodicity in noise

coffeeshop excerpt
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Voice Periodicity Enhancement

® Noise-robust subband autocorrelation

~ @ Subtract

g local average

: O suppresses steady

background
o P et G ’ e.g. machine noise
- - I -

O |5 min test set; 88% acc (no suppression: /9%)
e © also for enhancing speech by harmonic filtering s
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Detecting Repeating Events

® Recurring sound events can be informative
O |ndicate similar circumstance...
O but: define “event” — sound organization
O define "recurring event” — how !
o ..and how to find them — tractable?
® |dea: Use hashing (fingerprints)
O index points to other occurrences of each hash;
intersection of hashes points to match
- much quicker search
O use a fingerprint insensitive to background?

Lab
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Shazam Fingerprints

® Prominent spectral onsets are landmarks;
Use relations {f1, f2, At} as hashes

Phone ring - Shazam fingerprint

O intrinsically robust to background noise )
Lab
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Exhaustive Search for Repeats

Matching Sound Events

f"w“’e"!in ® More selective
2000 Telephone Telephone haSheS _’
Ring O Ring @&
O few hits required to
T s ) confirm match
: T | (faster; better
precision)
Tt O but less robust to
backgound
Faming L (reduce recall)
0 00 1000 — 1500 2000 2500
® Works well when repeats

O recorded music, electronic alerts
Lab O no good for "organic’ sounds e.g. garage door I
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Music Detector

® Two characteristic features for music

O strong, sustained periodicity (notes)

O clear, rhythmic repetition (beat)
d be present!

O at least one shou

music audio <

Pitch-range Local
subband > stability
autocorrelation measure
Rhythm-range Perceptual
envelope —> rhythm
autocorrelation model

® Noise-robust

O |looks for

® Beat tracker
o ..from Music IR work

Lab

\
/

nigh-order autocorrelation

Fused
music
classifier
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Generic Concept Detectors

® Consumer Video application:
How to assist browsing!?
O system automatically tags recordings
O tags chosen by usefulness, feasibility

® |nitial set of 25 tags defined:
O “animal’, “baby", “cheer”,"dancing " ...
O of 1300+ videos
O evaluate by average precision

® Multimodal detection

O separate audio + visual low-level detectors
O (then fused...)

o>
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MFCC Covariance Representation

® FEach clip/segment — fixed-size statistics
O similar to speaker ID and music genre classification

® Full Covariance matrix of MFCCs
O maps the kinds of spectral shapes present

MFCC
_ Covariance
Video Matrix
Soundtrack :k MFGC covarncs
. B
" -
MFCC &% e
features ol
o 3 5 | : o . ™ .-so
® Clip-to-clip distances for SVM classifier
Lab O by KL or 2nd Gaussian model 5k
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GMM Histogram Representation

® Want a more ‘discrete’ description
O .. to accommodate nonuniformity in MFCC space
O .. to enable other kinds of models...

® Divide up feature space with a single

Gaussian Mixture Model
O .. then represent each clip by the components used
Global Per-Category

Gaussian Mixture Component
Mixture Model Histogram

MFCC il oH | —
features CREREL
L O b _1920 .1‘0 6 1‘0 MFCC(0)20 0 12 3 45 GGM7M g]ixﬁ”;O 11 12 13 14 15 +
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Latent Semantic Analysis (LSA)

® Probabilistic LSA (pLSA) models each
histogram as a mixture of several ‘topics’
O .. each clip may have several things going on

® Topic sets optimized through EM
o p(fir | clip) = Ewpics p(fir | topic) p(topic | clip)

GMM histogram ftrs “Topic” GMM histogram ftrs
. [TTTTTT]
HH M- * E::Ip(ftrltopi?)l_z
N NEREE (T 1011 11
O : _ Ot T —
> p(ftr | clip) = =T -§ m
HER-l
[ ENCENESFNE
o use p(fopic | clip) as per-clip features o
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Audio-Only Results

® Wide range of results:
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O large AP uncertainty on infrequent classes N
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How does it ‘feel’?

® Browser impressions: How wrong is wrong?
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AP=[0.0839]

opahis  [REip] SRIN

VT5.04_01_0385.mpg -' VT5_04_01_0876.mpg

VTS-04-E]1_0947.mp-g VT5.04_01_0577.mpg
](b r_ I BC] b J) Score: 0.018422 Score: 0.014194 Score: 0.013534 Score: 0.011062
y ® Positive @ Positive Positive @ Positive

O Negative O Negative » Negative O Negative

i , - »
S=2= y . i A
1 B P
L — N . J - ' \ - -
. ‘—-‘ e s “a -" = 'L'. :_I é < ‘
VT5.04_01_0836.mpg _04_01_ 9.mpg VT5.04_01_0933.mpg 5.04_01_0007.mpg
Score: 0.01078 Score: 0.009237 Score: 0.007782 Score: 0.006562
& Positive ® Positive @ Positive @ Positive |
L O b © Negative © Negative © Negative O Negative

Analysis of Everyday Sounds - Ellis & Lee 2007-07-24 p. 29/35

Laboratory for the Recognition and
QOrganization of Speech and Audio

CorumsiA [JNIVERSITY
IN THE CITY OF NEW YORK



Confusion analysis

® Where are the errors coming from!?

(a) Overlapped Manual Labels (b) Confusion Matrix of Classified Labels
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07
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Baby
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Dancing
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Singin

Anima
Night
Crowd
Park
Sports
Group of 2
Cheer
Music
Group of 3 +
One person

07 05

04
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Fused Results - AV Joint Boosting

® Audio helps in many classes
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Future: Temporal Focus

® Global vs. local class models
O tell-tale acoustics may be ‘washed out’ In statistics

O try rterative realignment of HMMs:

YT baby 002:
voice
Ibab>;1 Old Way: New Way:
au . . .
° All frames contribute Limited temporal extents
R4 T T 4 N T S e G
= g R o S SRR L T O i
O | ‘ (op
o o
5 10 15 time/s S 10 15 time/s @
voice voice baby laugh bg
baby
laugh

O “background” (1) model shared by all clips
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Handling Sound Mixtures

® MFCCs of mixtures # mix of MFCCs
O recognition despite widely varying background?

O factorial models / Nonnegative Matrix Factorization
O sinusoidal / landmark techniques

o MFCC
Original Noise resynth
4 _ (_:rm-1 1-070307 i rm-1 1-070307-n_oise i
n il 1T iE: §
Solo £, - 1 LR Y
Voice | : b i
5e == 0
0
-20
= -40 -
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5% level / dE
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Larger Datasets

® Many detectors are visibly data-limited
O getting data Is ~ hard
O |abeling data Is
® Bootstrap from YouTube etc. Y[]u
O |ots of web video Is edited/dubbed... ~ Frodesiovser
- need a “‘consumer video' detector?
® Preliminary YouTube results disappointing
O downloaded data needed extensive clean-up
O models did not match Kodak data

® (Freely available data!)

o>
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Conclusions

® Environmental sound contains information
O .. that's why we hear!

O ..computers can hear it too

® Personal audio can be segmented, clustered
O find specific sounds to help navigation/retrieval

® Consumer video can be ‘tagged’
O ..even IN UNpromising cases

O audio I1s complementary to video

® |nteresting directions for better models

Lab
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