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Summary: A neural net classifier is trained to identify the pitch of a frame of subband autocorrelation principal components. 
 Accuracy is greatly improved for noisy, bandlimited speech, matched to the training data.
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Background

Material

Filterbank Classifier
• “Classic” approaches to pitch tracking reveal time-domain waveform 

periodicity via autocorrelation or related approaches.
•  An example is YIN [de Cheveigné & Kawahara 2002]: 

•  We are specifically interested 
in pitch tracking for low 
quality radio reception data 
(e.g. hand-held narrow-FM) 
(RATS project).

•  This data has both 
high noise/distortion 
and narrow bandwidth.

•  48, 4-pole 2-zero ERB-scale cochlea filter 
approximations form auditory-like subbands. 

•  The core of our system is a 
trained (MLP) classifier.

•  It takes k (10) PCA coefficients 
for each of s (48) subband 
autocorrelations and estimates 
posteriors over p (67) quantized 
pitch values.

•  The MLP is trained 
discriminatively on noisy data 
(with ground truth pitches).

•  Discriminative training virtually 
eliminates octave/suboctave 
errors seen in peak-based pitch 
tracking.

•  Added interference hurts the autocorrelation, but filtering into subbands 
can reveal certain bands with better local SNR.  Also, the contribution of 
each subband can be adjusted in later fusion to select sources.

•  An example is [Wu, Wang & Brown 2003] (“the Wu algorithm”): 

•   This work began as an investigation into the peak selection and 
integration stages of the Wu algorithm.  We found that replacing both 
stages with a trained classifier offered large performance improvements, 
as well as the chance to train domain-specific pitch trackers.

Training Data

Evaluation

•  The pitch classifier needs training data with ground truth.  
Performance improves when training data is more similar to test data.

•  We used pitch-annotated data (Keele), then artificially filtered 
and added noise to resemble the target domain.

•  We also generated 
pseudo-ground-
truth for target 
domain data by 
using only frames 
where three 
independent pitch 
trackers agreed.
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Autocorrelation Principal Component Analysis Hidden Markov Model Smoothing
•  Normalized autocorrelation out to 25 ms 

(400 samples @ 16 kHz) reveals periodic 
structure in each subband.

•  The autocorrelation in each subband is highly 
constrained by the bandlimited input.

•  Pitch information is distributed throughout 
each autocorrelation row; 
simple peak-picking ignores most of this.

•  The autocorrelations in a given subband 
always reflect the center frequency, i.e., they 
occupy a small part of the 400-D space.

•  We use per-subband PCA to reduce each 
band to 10 coefficients, which preserves 
almost all the variance.

•  PCA bases remain stable when learned from 
different signal conditions, so are fixed.

•  The MLP generates posterior probabilities 
across 66 pitch candidates + “no pitch” 
for every 10 ms time frame.

•  These become a single pitch track via Viterbi 
decoding through an HMM with pitch states.

•  Transition probabilities are set parametrically 
(pitch-invariant) and tuned empirically.

•  We tested on the pitch- 
annotated FDA data with 
radio-band filtering and 
pink noise added at a 
range of SNRs.

•  SAcC trained on Keele 
data (with similar 
corruption) substantially 
outperformed other pitch 
trackers.

•  Later experiments show 
that SAcC can generalize 
to mismatched train/test 
scenarios. 

•  GPE, the most common pitch tracking metric, only considers frames where 
both ground truth and system report a pitch value.  This rewards “punting” 
on difficult frames.

•   We define VE as accuracy over all 
true-voiced frames, and UE over all 
true-unvoiced frames.

•  We evaluate by PTE, the mean of 
VE and UE.
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