Current work at ICSI

Dan Ellis
International Computer Science Institute, Berkeley CA
<dpwe@icsi.berkeley.edu>

Outline

- 1. Broadcast News MLP recognizer
- 2. Topic modeling
- 3. Acoustic segment classification
- 4. This demonstrator front-end

The modulation-filtered spectrogram

(Brian Kingsbury)

Goal: invariance to variable acoustics

- filter out irrelevant modulations
- channel adaptation (on-line auto. gain control)
- multiple representations

Results (small vocabulary):

Feature	Clean test WER	Reverb test WER
plp	5.9%	22.2%
msg	6.1%	13.8%

Broadcast News recognizer

- 1998 evaluation RNN + MLP
- 8000 HU nets trained for MLP-only system:

combo WER%	RNN98	MSG-8kHz	PLP-16kHz
RNN98	27.2	24.9	24.5
MSG-8kHz		29.7	24.4
PLP-16Khz			25.5

- RNN+MSG+PLP: 23.7%
- plp 8000HU forward-pass ~0.7x real time (spert)
- Gender-dependent versions:

net set	WER _F %	WER _M %	WER%
plp-GD	20.3	27.2	24.6
msg-GD			
plp+msg-GD			

Broadcast News: ongoing

- **Dynamic pronunciations** (Eric Fosler)
 - data-derived rules for context-dependent pronunciations:
 phones, syllables, words, rate ...
 - rescored N-best output from 1st pass
 - ~ 3% RER improvement
- Multiband (Adam Janin / Nikki Mirghafori)
 - 20% RER for small-vocabulary (Numbers)
 - no significant improvement yet for BN
 - features: MSG, cepstra, KLT, plp
 - all-way possible combinations & weights

Multiband for Broadcast News

(Adam Janin / Nikki Mirghafori)

Scheme that worked best for small vocab:

- 4-way frequency split
- plp cepstra+deltas within each band
- MLP classifier for each band + MLP combiner

Weighted average of all possible combos

- $p(q \mid a,b,c,d) = \sum_{S} p(q \mid S,a,b,c,d)$. p(S)S ranges over 16 possible combinations
- p(S) from? constant, local feature (entropy)
- oracle best p(S) → WER=19% (25%RER)

Topic modeling

(Dan Gildea & Thomas Hofmann)

Bayesian model:

- $p(word \mid doc) = \sum_{t} p(word \mid topic) p(topic \mid doc)$
- EM modeling of p(word | topic) & p(topic | doc)
 over training set
- p(topic | doc) estimated from context in recognition

Use to modify language model weights

- $p(word) \propto p_{tri}(word) p_{top}(word) / p_{uni}(word)$
- WSJ: trigram perplexity of 109 reduced 17%
- use for BN recognition?
- Use for topic segmentation?

Acoustic Segment Classification

(Gethin Williams (SU) & Dan Ellis)

- **Features from posteriors show utterance type:**
 - average per-frame entropy
 - 'dynamism' mean squared 1st-order difference
 - average energy of 'silence' label
 - covariance matrix distance to clean speech

- 100% on Scheirer/Slaney speech-music testset
- Use for acoustic segmentation?

Thisl demo development

- Stand-alone Tcl/Tk implementation
 - doesn't require httpd
 - speech-input ready

