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Summary:[Body-worn audio recorders can collect huge “personal audio” archives of everything heard by the user, but
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navigating this data is a challenge. We investigate a noise-resistant audio fingerprint as a way to identify recurrent sound events.
The fingerprint works well for data that is highly repeatable (e.g.phone rings) but not for more “organic” sounds (door closures etc.).

Personal Audio Archives

[JConsumer MP3 players (e.g. iRiver T10)
can also record continuously for over 12 hours
on a single rechargable AA battery
-0 Easy to collect a “personal audio archive”
0 of everything heard throughout the day
-0 .. but finding anything in the recordings can
[0 take close to real-time

-[D0We are researching ways get useful information from this data
-0 e.g. automatic retrospective calendar of activities/locations

‘[DWork so far addresses segmenting and clustering archives [Ellis & Lee 06]
-0 works with time frames of 6..120 sec
-0 investigates best features to capture background ambience
-0 via BIC criterion (like speaker segmentation)
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Spectrogram-like representation

of 8 hour recording shows energy
(intensity), spectral flatness (saturation)
and variance (hue) in 1 min windows .

| ! | ! | ! | ! | ! | ! | ! | !
21:00 22:00 23:00 0:00 1:00 2:00 3:00 4:00
Clock time

-0 cluster recurring ambiences/environments with spectral clustering

o[] looks for repeating foreground events based on fingerprinting
-0 repeating events may be relevant to user e.g. phone rings, theme songs
-0 data-mining: repeats can be identified without user intervention
-0 want to find repeats despite changes in channel and background
0 (unlike exact repeats of [Johnson et al 00, Kashino et al 03, Herley 06])

[Vision is for interactive browser/calendar displaying multiple sources of
information gleaned from recordings and other sources
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Sound Event Fingerprints

[ITo find repeating events in the long-duration recordings, we use the
fingerprinting techniqgue from Shazam [Wang 02, 06]

Phone ring - Shazam fingerprint
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-0 Prominent peaks — landmarks — are selected in a spectrogram,
[0 thresholded to have a roughly constant rate in six frequency bands

[ -0 Each landmark is paired with up to 9 neighbors nearby in time-frequency
[ -0 Each pair gives a combinatorial hash defined by the frequencies of the
O two landmarks and the time between them {f, f,, At}
00 - quantizing each component to 6 bits gives 218 (262,144) distinct hashes
-0 An index file records the | 2007-04-11-0839.idx
|:| “mes When each hash O0|00|00: 7012.45 11052.33 96384.28
0 occurs (a multi-hour 88 88 8; 123.11 125.87 23004.66 61993.83
[ recording has an index 00/00]03: 71552.34 101663.03
0 of <10MB)
[ -0 Multiple hashes occurring around two time locations with the same relative
[l timing indicate a repeated sound event
ocatterplat of matching hash locations: segment found Histogram of time offsets far matching hashes: segment found
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Key Advantages of Shazam Fingerprint:

[ -0 No time framing to influence the hash (unlike [Burges et al 03, Herley 06])
-0 Spectral peaks make hashes almost invariant to background noise
-0 Missing any single hash does not preclude matching
-0 Lower bound number of matching hashes allows precision/recall tradeoff

Finding Repeated Events

[ITo find possible earlier instances of events in current window:
-0 retrieve times of all earlier instances of current hashes
[0 (fast because store is indexed by hash value)
-0 make a histogram of relative timings
-0 look for large peak — repeated event
O ... nearly constant time search

ArchiveLength (min) | 60 120 180 390
Search time (ms) 21 31 37 131

time/sec

Example

[JHistogram of # shared hashes in
5 sec windows for 30 min personal
audio recording, with two instances
of a phone ring and three plays of
music recording “Song A”.
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Evaluation

Category Recall Precision
Production Audio| 29/30 97% | 29/34 85%
Alert Sounds 45/65 69% | 45/45 100%
OrganicSounds 0/20 0% | 0/20 0%

» Exactly-repeating sounds (alarms,
recordings) are detected well; “organic”
sounds (speech, door closing) are not.

» Search for particular event (telephone ring)

SNR/dB 3 -3 -9 -15 -21 _
Recall | 100% 89% 89% 89% 56% shows excellent resistance to background
noise.
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