

The importance of auditory illusions for artificial listeners

Dan Ellis

International Computer Science Institute, Berkeley CA <dpwe@icsi.berkeley.edu>

Outline

- 1 Computational Auditory Scene Analysis
- 2 A survey of CASA
- 3 Illusions & prediction-driven CASA
- CASA and speech recognition
- 5 Implications for duplex perception
- 6 Conclusions

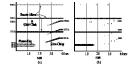
CASA talk - Haskins/NUWC - Dan Ellis

TOP

Computational Auditory Scene Analysis (CASA)

- · Automatic sound organization?
 - convert an undifferentiated signal into a description in terms of different sources
- · Psychoacoustics defines grouping 'rules'
 - e.g. [Bregman 1990]
 - translate into computer programs?

Motivations & Applications


- it's a puzzle: new processing principles?
- real-world interactive systems (speech, robots)
- hearing prostheses (enhancement, description)
- advanced processing (remixing)
- multimedia indexing (movies etc.)

CASA talk - Haskins/NUWC - Dan Ellis

TOP

CASA2: Hypothesis systems

- Okuno et al. (1994-)
 - 'tracers' follow each harmonic + noise 'agent'
 - residue-driven: account for whole signal
- Klassner 1996
 - search for a combination of templates
 - high-level hypotheses permit front-end tuning

Ellis 1996

CASA talk - Haskins/NUWC - Dan Ellis

- model for events perceived in dense scenes
- prediction-driven: observations hypotheses

■ TOP

Computational Auditory Scene Analysis: An overview and some observations

Dan Ellis

International Computer Science Institute, Berkeley CA <dpwe@icsi.berkeley.edu>

Outline

- 1 Modeling Auditory Scene Analysis
- A survey of CASA
- 3 Prediction-driven CASA
- CASA and speech recognition
- 6 Implications for other domains
- 6 Conclusions

CASA talk - Haskins/NUWC - Dan Ellis

1997nct24/5 - 2

CASA talk - Haskins/NUWC - Dan Ellis

▼ TOP ►

CASA survey

- · Early work on co-channel speech
 - listeners benefit from pitch difference
 - algorithms for separating periodicities
- Utterance-sized signals need more
- cannot predict number of signals (0, 1, 2 ...)
- birth/death processes
- · Ultimately, more constraints needed
 - nonperiodic signals
 - masked cues
 - ambiguous signals

CASA talk - Haskins/NUWC - Dan Ellis

CASA talk - Haskins/NUWC - Dan Ellis

1997oct24/5 - 8

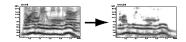
▼ TOP ►

CASA3: Other approaches

- · Blind source separation (Bell & Sejnowski)
 - find exact separation parameters by maximizing statistic e.g. signal independence
- HMM decomposition (RK Moore)
 - recover combined source states directly
- . Neural models (Malsburg, Wang & Brown)
 - avoid implausible AI methods (search, lists)
 - oscillators substitute for iteration?

■ TOP

Auditory Scene Analysis


"The organization of complex sound scenes according to their inferred sources"

- · Sounds rarely occur in isolation
 - getting useful information from real-world sound requires auditory organization
- Human audition is very effective
- unexpectedly difficult to model
- 'Correct' analysis defined by goal
 - human beings have particular interests...
 - (in)dependence as the key attribute of a source - ecological constraints enable organization

CASA1: Periodic pieces

- Weintraub 1985
- separate male & female voices
- find periodicities in each frequency channel by auto-coincidence
- number of voices is 'hidden state'
- Cooke & Brown (1991-3)
- divide time-frequency plane into elements
- apply grouping rules to form sources
- pull single periodic target out of noise

CASA talk - Haskins/NUWC - Dan Filis

▼ TOP

Prediction-driven CASA

Perception is not direct but a search for plausible hypotheses

Data-driven.. Front end vs. Prediction-driver

- Novel features
- reconcile complete explanation to input
- 'vocabulary' of noise/transient/periodic
- multiple hypotheses
- sufficient detail for reconstruction
- explanation hierarchy

CASA talk - Haskins/NUWC - Dan Ellis 1997oct24/5 - 9

Analyzing the continuity illusion

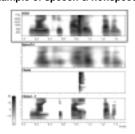
Interrupted tone heard as continuous

- .. if the interruption could be a masker

Data-driven just sees gaps

Prediction-driven can accommodate

- special case or general principle?


CASA talk - Haskins/NUWC - Dan Ellis

Example of speech & nonspeech

Problems

- undoing classification & normalization
- finding a starting hypothesis
- granularity of integration

CASA talk - Haskins/NUWC - Dan Ellis

Lessons for other domains

- · Problem: inadequate signal data
 - hearing: masking
 - vision: occlusion
 - other sensor domains: noise/limits
- · General answer: employ constraints
 - high-level prior expectations
 - mid-level regularities
 - low-level continuity
- Hearing is a admirable solution
- · Prediction-driven approach suggests priorities

◀ TOP

PDCASA example: Construction-site ambience

- error allocation
- rating hypotheses
- source hierarchy
- resynthesis

CASA talk - Haskins/NUWC - Dan Ellis

Prediction-driven analysis and duplex perception

- · Single element 2 percepts?
 - e.g. contralateral formant transition
 - doesn't fit into exclusive support hierarchy
- But: two elements at same position
- hypotheses suggest overlap
- predictions combine
- reconciliation is OK
- Order debate is sidestepped
 - .. not a left-to-right data path

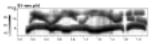
CASA talk - Haskins/NUWC - Dan Ellis

TOP

Essential features of PDCASA

- · Prediction-reconciliation of hypotheses
 - specific hypotheses are pursued
- lack-of-refutation standard
- · Provide a complete explanation
 - keeping track of the obstruction can help in compensating for its effects
- · Hierarchic representation
 - useful constraints occur at many levels: want to be able to apply where appropriate
- · Preserve detail
 - even when resynthesis is not a goal
 - helps gauge goodness-of-fit

■ TOP


- Speech recognition is very fragile
- lots of motivation to use 'source separation'
- Recognize combined states? (Moore)
- 'state' becomes very complex
- Data-driven: CASA as preprocessor
- problems with 'holes' (Cooke, Okuno)
- doesn't exploit knowledge of speech structure
- Prediction-driven: speech as component
- same 'reconciliation' of speech hypotheses
- need to express 'predictions' in signal domain

Duplex perception as masking & restoration

- Account for masking could 'work' for duplex
 - bilateral masking levels?
- masking spread?
- tolerable colorations?
- Sinewave speech as a plausible masker?
 - formants hiding under each whistle?
 - greedy speech hypothesis generator
- Problems:
- where do hypotheses come from? (priming)
- what limits on illusory speech?

CASA talk - Haskins/NUWC - Dan Ellis

CASA talk - Haskins/NUWC - Dan Ellis

1997oct24/5 - 18

Conclusions

- Auditory organization is indispensable in real environments
- We don't know how listeners do it! - plenty of modeling interest
- Prediction-reconciliation can account for 'illusions'
 - use 'knowledge' when signal is inadequate
 - important in a wider range of circumstances?
- Speech recognizers are a good source of knowledge
- Wider implications of the prediction-driven approach
 - understanding perceptual paradoxes
- applications in other domains

The importance of auditory illusions for artificial listeners

Dan Ellis
International Computer Science Institute, Berkeley CA
<dpwe@icsi.berkeley.edu>

Outline

- 1 Computational Auditory Scene Analysis
- 2 A survey of CASA
- 3 Illusions & prediction-driven CASA
- 4 CASA and speech recognition
- 5 Implications for duplex perception
- 6 Conclusions

Computational Auditory Scene Analysis: An overview and some observations

Dan Ellis
International Computer Science Institute, Berkeley CA
<dpwe@icsi.berkeley.edu>

Outline

- 1 Modeling Auditory Scene Analysis
- 2 A survey of CASA
- 3 Prediction-driven CASA
- 4 CASA and speech recognition
- 5 Implications for other domains
- 6 Conclusions

Auditory Scene Analysis

"The organization of complex sound scenes according to their inferred sources"

- Sounds rarely occur in isolation
 - getting useful information from real-world sound requires auditory organization
- Human audition is very effective
 - unexpectedly difficult to model
- 'Correct' analysis defined by goal
 - human beings have particular interests...
 - (in)dependence as the key attribute of a source
 - ecological constraints enable organization

Computational Auditory Scene Analysis (CASA)

Automatic sound organization?

 convert an undifferentiated signal into a description in terms of different sources

Psychoacoustics defines grouping 'rules'

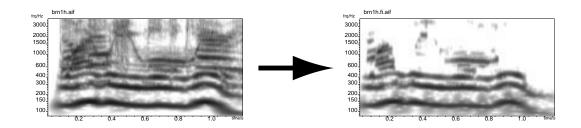
- e.g. [Bregman 1990]
- translate into computer programs?

Motivations & Applications

- it's a puzzle: new processing principles?
- real-world interactive systems (speech, robots)
- hearing prostheses (enhancement, description)
- advanced processing (remixing)
- multimedia indexing (movies etc.)

CASA survey

- Early work on co-channel speech
 - listeners benefit from pitch difference
 - algorithms for separating periodicities
- Utterance-sized signals need more
 - cannot predict number of signals (0, 1, 2 ...)
 - birth/death processes
- Ultimately, more constraints needed
 - nonperiodic signals
 - masked cues
 - ambiguous signals

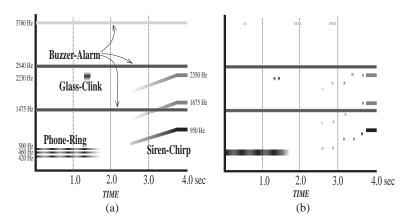

CASA1: Periodic pieces

Weintraub 1985

- separate male & female voices
- find periodicities in each frequency channel by auto-coincidence
- number of voices is 'hidden state'

Cooke & Brown (1991-3)

- divide time-frequency plane into elements
- apply grouping rules to form sources
- pull single periodic target out of noise

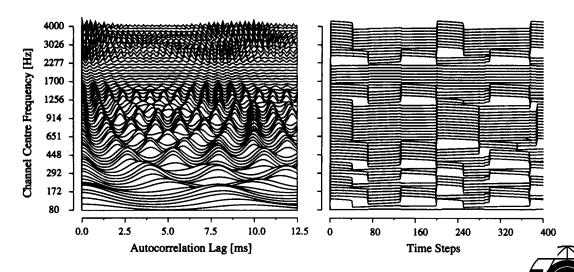


CASA2: Hypothesis systems

- Okuno et al. (1994-)
 - 'tracers' follow each harmonic + noise 'agent'
 - residue-driven: account for whole signal

Klassner 1996

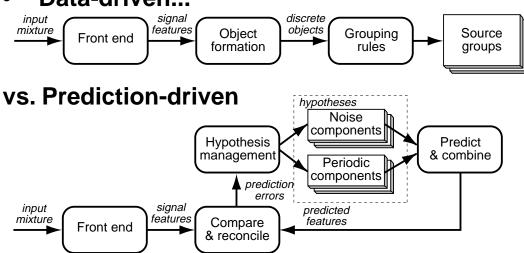
- search for a combination of templates
- high-level hypotheses permit front-end tuning


Ellis 1996

- model for events perceived in dense scenes
- prediction-driven: observations hypotheses

CASA3: Other approaches

- Blind source separation (Bell & Sejnowski)
 - find exact separation parameters by maximizing statistic e.g. signal independence
- HMM decomposition (RK Moore)
 - recover combined source states directly
- Neural models (Malsburg, Wang & Brown)
 - avoid implausible AI methods (search, lists)
 - oscillators substitute for iteration?

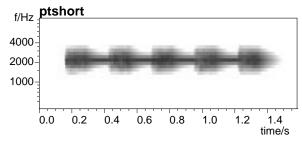


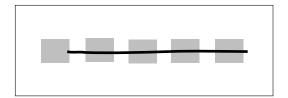
Prediction-driven CASA

Perception is not *direct* but a *search* for *plausible hypotheses*

Data-driven...

Novel features

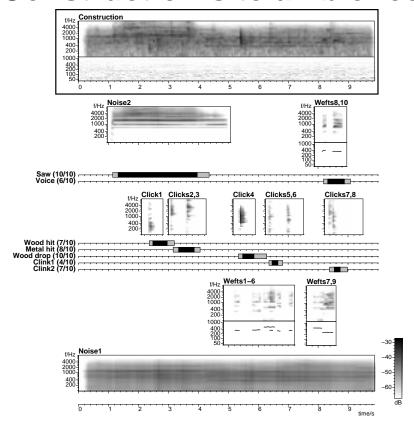

- reconcile complete explanation to input
- 'vocabulary' of noise/transient/periodic
- multiple hypotheses
- sufficient detail for reconstruction
- explanation hierarchy


Analyzing the continuity illusion

- Interrupted tone heard as continuous
 - .. if the interruption could be a masker

Data-driven just sees gaps

Prediction-driven can accommodate

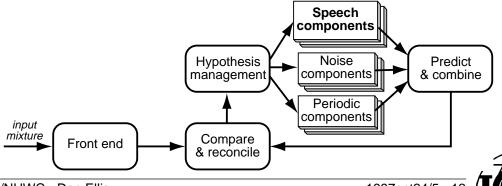


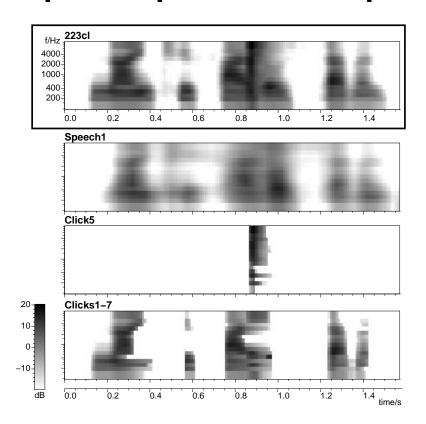
- special case or general principle?

PDCASA example: **Construction-site ambience**

Problems

- error allocation
- source hierarchy resynthesis
- rating hypotheses




CASA for speech recognition

- Speech recognition is very fragile
 - lots of motivation to use 'source separation'
- Recognize combined states? (Moore)
 - 'state' becomes very complex
- Data-driven: CASA as preprocessor
 - problems with 'holes' (Cooke, Okuno)
 - doesn't exploit knowledge of speech structure
- Prediction-driven: speech as component
 - same 'reconciliation' of speech hypotheses
 - need to express 'predictions' in signal domain

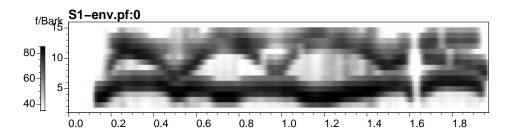
Example of speech & nonspeech

Problems:

- undoing classification & normalization
- finding a starting hypothesis
- granularity of integration

Prediction-driven analysis and duplex perception

- Single element → 2 percepts?
 - e.g. contralateral formant transition
 - doesn't fit into exclusive support hierarchy
- But: two elements at same position
 - hypotheses suggest overlap
 - predictions combine
 - reconciliation is OK
- Order debate is sidestepped
 - .. not a left-to-right data path



Duplex perception as masking & restoration

- Account for masking could 'work' for duplex
 - bilateral masking levels?
 - masking spread?
 - tolerable colorations?
- Sinewave speech as a plausible masker?
 - formants hiding under each whistle?
 - greedy speech hypothesis generator

Problems:

- where do hypotheses come from? (priming)
- what limits on illusory speech?

Lessons for other domains

- Problem: inadequate signal data
 - hearing: masking
 - vision: occlusion
 - other sensor domains: noise/limits
- General answer: employ constraints
 - high-level prior expectations
 - mid-level regularities
 - low-level continuity
- Hearing is a admirable solution
- Prediction-driven approach suggests priorities

Essential features of PDCASA

Prediction-reconciliation of hypotheses

- specific hypotheses are pursued
- lack-of-refutation standard

Provide a complete explanation

 keeping track of the obstruction can help in compensating for its effects

Hierarchic representation

useful constraints occur at many levels:
 want to be able to apply where appropriate

Preserve detail

- even when resynthesis is not a goal
- helps gauge goodness-of-fit

Conclusions

- Auditory organization is indispensable in real environments
- We don't know how listeners do it!
 - plenty of modeling interest
- Prediction-reconciliation can account for 'illusions'
 - use 'knowledge' when signal is inadequate
 - important in a wider range of circumstances?
- Speech recognizers are a good source of knowledge
- Wider implications of the prediction-driven approach
 - understanding perceptual paradoxes
 - applications in other domains

