Sound, Mixtures, and Learning:
LabROSA overview

0 Sound Content Analysis
e Recognizing sounds
e Organizing mixtures

9 Accessing large datasets

Dan Ellis <dpwe@ee.columbia.edu>
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Sound Content Analysis
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Sound understanding: the key challenge
- what listeners do
- understanding = abstraction

Applications
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The problem with recognizing mixtures

“Imagine two narrow channels dug up from the edge of a
lake, with handkerchiefs stretched across each one.
Looking only at the motion of the handkerchiefs, you are
to answer questions such as: How many boats are there
on the lake and where are they?” (after Bregman’90)

 Auditory Scene Analysis: describing a complex
sound in terms of high-level sources/events

- ... like listeners do

 Hearing is ecologically grounded
- reflects natural scene properties = constraints
- subjective, not absolute
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Approaches to handling sound mixtures

 Separate signals, then recognize
- e.g. CASA, ICA
- nice, if you can do it

« Recognize combined signal
- ‘multicondition training’
- combinatorics..

« Recognize with parallel models
- full joint-state space?

- or: divide signal into fragments,
then use missing-data recognition

Lab
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Outline

0 Sound Content Analysis

@ Recognizing sounds
- Speech recognition
- Nonspeech

e Organizing mixtures

Q Accessing large datasets
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DATA

@  Recognizing Sounds: Speech

« Standard speech recognition structure:

‘ sound
Feature
calculation
‘ feature vectors
Acoustic model Acoustic
parameters classifier
Word models _
NN ‘ phone probabilities
ORI RON T
Language model [~ decoder s]  ehl ¥ ubl MJ d] |
p("sat’["the", "cat") phone / word e
p("saw"("the","cat") sequence seventy|
Understanding/
application...

« How to handle additive noise?
- just train on noisy data: ‘multicondition training’
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Novel speech signal representations
(with Marios Athineos)

e Common sound models use 10ms frames
- but: sub-10ms envelope is perceptible
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 Convertto features for ASR
- improvements esp. for stops
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Finding the Information in Speech
(with Patricia Scanlon)

e Mutual Information in time-frequency:
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Alarm sound detection
(Ellis 2001)

 Alarm sounds have particular structure
- people ‘know them when they hear them’

- clear even at low SNRs

502638+20 hrn01 bfr02 buz01

freq / kHz
w

0 5 10 15 20 25 time/s level / dB

« Why investigate alarm sounds?
- they're supposed to be easy
- potential applications...

« Contrast two systems:
standard, global features, P(X|M)
sinusoidal model, fragments, P(M,§Y)
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Alarms: Results

Restaurant+ alarms (snr 0 ns 6 al 8)

freq / kHz

MLP classifier output
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« Both systems commit many insertions at 0dB
SNR, but in different circumstances:

Noi Neural net system Sinusoid model system
olse Del Ins Tot Del Ins Tot

1(@mb)| 7/25 2 36% [14/25 1 60%

2 (bab)| 5/25 63 272% | 15/25 2 68%

3(spe)| 2/25 | 68 | 280% |12/25| 9 84%
4(mus)| 8/25 | 37 | 180% | 9/25 | 135 | 576%
Overall| 22/100] 170 | 192% [50/100] 147 | 197%
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Outline

0 Sound Content Analysis
9 Recognizing sounds

e Organizing mixtures
- Auditory Scene Analysis
- Missing data recognition
- Parallel model inference

@ Accessing large datasets
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@) Auditory Scene Analysis
(Bregman 1990)

« How do people analyze sound mixtures?
- break mixture into small elements (in time-freq)
- elements are grouped in to sources using cues
- sources have aggregate attributes

e« Grouping ‘rules’ (Darwin, Carlyon, ...):
- cues: common onset/offset/modulation,
harmonicity, spatial location,

Onset
map

u Sourc_e
properties

Grouping

Frequency Harmonicity P!
mechanism

analysis map

Position
map

(after Darwin, 1996)
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Cues to simultaneous grouping

e Elements + attributes

8000

freq / Hz

6000

4000

2000

« Common onset
- simultaneous energy has common source

 Periodicity
- energy in different bands with same cycle

e Other cues
- spatial (ITD/IID), familiarity, ...

e But:
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Computational Auditory Scene Analysis:

The Representational Approach
(Cooke & Brown 1993)

 Direct implementation of psych. theory

input signal discrete
mixture features i objects i
>| Frontend Object ) Grouping I Source
(maps) formation rules groups

Doiay | B m

freq

time

- ‘bottom-up’ processing
- uses common onset & periodicity cues

 Ableto extract voiced speech:
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Adding top-down constraints

Perception is not direct
but a search for plausible hypotheses

o Data-driven (bottom-up)...

input signal discrete
mixture features Obiect objects G i Sour
»| Frontend jec rouping ource
- formation rules groups

- objects irresistibly appear
vs. Prediction-driven (top-down)

' hypotheses
} Noise [y
] components I\ ]
Hypothesis V! 1 Predict
management [\ — . & combine
Periodic  [[p*
~ 1 |components |
prediction: !
_ errors +  ~—__————————
input signal predicted
mixture features features

Front end Compare
& reconcile

- match observations
with parameters of a world-model

- need world-model constraints...
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Prediction-Driven CASA
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Lab

the Recognition and
ion of Speech and Audio

Segregation vs. Inference

Source separation
requires attribute separation

- sources are characterized by attributes
(pitch, loudness, timbre + finer details)

- need to identify & gather different attributes for
different sources ...

Need representation that segregates attributes
- spectral decomposition
- periodicity decomposition

Sometimes values can’t be separated
- e.g. unvoiced speech
- maybe infer factors from probabilistic model?

P(O, X, y) = p(X y|O)

- or: just skip those values,
iInfer from higher-level context

- do both: missing-data recognition

Dan Ellis
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Missing Data Recognition

« Speech models p(x|m) are multidimensional...
- 1.e. means, variances for every freq. channel
- need values for all dimensions to get p()

« But: can evaluate over a %,

subset of dimensions x, P(XkXu)
P04 = [o0xe x e,

g Xk
H?nc.e’ . POXXY) O pO%)

missing data recognition:

Present data mask P(x |a) =
] ~ P(xy | )
™ -P(x2|0)
[ TPoed
-P(xq [ 0)
| e
™ P(x|d)

dimension []

time [J
- hard part is finding the mask (segregation)
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Comparing different segregations

 Standard classification chooses between
models M to match source features X

M* = argmax P(M|X) = argmax P(X|M)-m

B

 Mixtures — observed features Y, segregation §
all related by P(X|Y, S)

A

Observation
Y(f)

Source
X(f)

frea
- spectral features allow clean relationship

o Joint classification of model and segregation:

P(X|Y, S
P(M, S|Y) = P(M)JP(X|M)- (P(|X) )dX-P(S|Y)

- probabilistic relation of models & segregation

Lab
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Multi-source decoding

e Search for more than one source

0-0-0-0-0-0-0-0-0- ()
Y(t) S(t)

FAE 1.
Si(1)
0-0-0-0-0-0-0-0-0- ((t)

 Mutually-dependent data masks

« Usee.g. CASA features to propose masks
- locally coherent regions

 Lots of issues in models, representations,
matching, inference...

O'
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What a speech HMM contains

e Markov model structure: states + transitions

State models (means) State Transition Probabilities
N 4——=—————— APAEAFEN TSI
X [ |
= .l S(SIR[® wf
£ I SIRNN -
2t | | e
Ll {E N | 30 =
|| || I "
| : E i E |

10 20 30 40 50

« A generative model
- but not a good speech generator!

-
o 2 3 4 5 time / sec
Lab - only meant for inference of p(X|M)
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“One microphone source separation”
(Roweis 2000, Manuel Reyes)

o State sequences — t-f estimates — mask
Speaker 1 Speaker 2
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- 1000 states/model (— 10° transition probs.)

Lab - simplify by modeling subbands (coupled HMM)?
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Subband models
(Reyes, Jojic)

« Reduce the number of states required
- 4000 states x1 band — 30 statesx19 bands
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e Train coupled HMMs via variational approx
S5,1 S52 S53 S54
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Tracking source normalization

o Standard HMM sound models try to normalize
away energy variation

- but: each source in mixture has different ‘gain’

Source 1 Source 2
Composed
Data Data Data
Normalization Normalization o
+kq +ko Normalization ?
Normalization
l l mismatch
Model 1 Model 2 Model 1 Model 2

* Instead, factor out scalar gain for each source

- solve with var. approx. to P(S,a)

Lab
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Outline

Sound Content Analysis
Recognizing sounds
Organizing mixtures

Accessing large datasets
Meeting Recordings

The Listening Machine
Music Information Retrieval

Lab
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(4] Accessing large datasets:

The Meeting Recorder Project
(with ICSI, UW, IDIAP, SR, Sheffield)

« Microphones in conventional meetings
- for summarization / retrieval / behavior analysis

- Iinformal, overlapped speech

. Data collection (ICSI, UW, IDIAP, NIST):

- ~100 hours collected & tran's'éﬁbed

« NSF ‘Mapping Meetings’ project

- /A DanEllis Sound, Mixtures & Learning 2003-09-26 - 26




100xR skew/samps

Speaker Turn detection
(Huan Wei Hee, Jerry Liu)

e Acoustic:
Triangulate tabletop mic timing differences

- use normalized peak value for confidence
rqr-2000-11-02-1440: PZM xcorr lags

Example cross coupling response, chan3 to chan0
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= PR u.wh L Nm fi TNl AR o o
0o 50 100 150 200 250 300 3 1. - . . . .
time /s -3 -2 -1 0 1 2 3
lag 1-2 / ms
« Behavioral: Look for patterns of speaker turns
mr04: Hand-marked speaker turns vs. time + auto/manual boundaries
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The Listening Machine

« Smart PDA records everything

 Only useful if we have index, summaries
- monitor for particular sounds
- real-time description

e Scenarios 23

'
L

- personal listener — summary of your day
- future prosthetic hearing device
- autonomous robots

 Meeting data, ambulatory audio
Lab
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Personal Audio

 LifeLog / MyLifeBits /
Remembrance Agent:
Easy to record everything you
hear

e Then what?

- prohibitively time consuming to
search

- but .. applications if access easier

freq/ Hz

50 100 150 200 250 time/ min

freq / Bark

14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30
clock time

Lab
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Music Information Retrieval

 Transfer search concepts to music?
- “musical Google”
- finding something specific / vague / browsing
- Is anything more useful than human annotation?

 Most interesting area: finding new music
- is there anything on mp3.com that | would like?
- audio is only information source for new bands

 Basic idea:
Project music into a space where
neighbors are “similar”

 Also need models of personal preference
- where in the space is the stuff | like
- relative sensitivity to different dimensions

 Evaluation problems
- requires large, shareable music corpus!
Lab
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Audio
Input
(Class i)

Audio
Input
(Class )

 ——

Music similarity from Anchor space

A classifier trained for one artist (or genre)

will respond partially to a similar artist

Each artist evokes a particular pattern of
responses over a set of classifiers

We can treat these classifier outputs as a new

feature space in which to estimate similarity

Featur_e
calculation

AR

—

calcuiation

Y

(@]

Anchor I vector in "Anchor
Space"
Anchor
Classmer P(aylx)

Lab
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n-dimensional

P(a,lx)

Conversion to Anchorspace

Y
—p GMM
r Modeling \
> GMM /
Modeling
%

« “Anchor space” reflects subjective qualities?

Dan Ellis
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Playola interface ( www.playola.org )

 Browser finds closest matches to single tracks
or entire artists in anchor space

 Direct manipulation of anchor space axes

-Mew Playlist-

e e f
The Ballad of The Woodbury Muffin |
Sl pe————

The Woodbury Muffin AltNGrunge [N TR
> N Monkey Dreams 2:57 I
B Outbrealk CollegeRock R

A Cold Dark Might The Woodbury Muffin Country EEEEEEEEEEELT T T T IT T

s 113 | ountry
=lig fo¥e Qutbreak e TV o
© » & Leo, The Ballad o The Woodbury MUTfin. 4 45 ey Electronica I
——— [
o» N Baby I Forgot To  The Woodbury Muffin 4,4 R MetalNPunk |
Tell You Outbreak : NewWave N ] -

Rap IR BREEEETTTTTT 1]

RnBSoul I ] -
SingerSongwriter |
SoftRock
TradRock

Female

HiFi

Similar Songs:

PN Baby I Forgot To Tell  The Woodbury Muffin
You Dutbreak

PN Mumber five Bizi Chyld 0.07 ‘*

PN Waiting for Your Love Toto 0.08 ‘*
-

. s - v [y FEERE s g
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http://www.playola.org/

Evaluation

« Arerecommendations good or bad?

e Subjective evaluation is the ground truth

- .. but subjects aren’t familiar with the bands
being recommended

- can take a long time to decide if a
recommendation is good

« Measure match to other similarity judgments
- e.g. musicseer data:

Top rank agreement

70 1N
60 |\
50 | 7\ o —&— SrvKnw 4789x3.58
»— ——
— . —=m— SrvAll 6178x8.93
540 \/\ GamKnw 7410x3.96
30 \\.,,_ GamAll 7421x8.92
X %

20 ’%A\./ =
10

0

cei cmb erd e3d opn kn2 rnd ANK
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Summary

e Sound

- .. contains much, valuable information at many
levels

- intelligent systems need to use this information

e Mixtures

- .. are an unavoidable complication when using
sound

- looking in the right time-frequency place to find
points of dominance

e Learning

need to acquire constraints from the
environment

recognition/classification as the real task

Lab
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LabROSA Summary

%

= .

< « Broadcast * Meetings

= e Movies » Personal recordings

8 * Lectures * Location monitoring
ROSA

* Object-based structure discovery & learning

» Speech recognition * Scene analysis
e Speech characterization < Audio-visual integration
* Nonspeech recognition * Music analysis
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Extra Slides
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Music Applications

« Music as a complex, information-rich sound

o Applications of separation & recognition:
- note/chord detection & classification

DYWMB: Allgnments to MIDI note 57 mapped to Orlg Audlo

freq / kHz

- singing detection (— genre identification ...)

Track 117 - Aimee Mann (dynvox=Aimee, unseg=Aimee)
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Rev
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time / sec
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Artist Similarity

 Recognizing work from each artist is all very well...

e But: what is Bn_cdfiBLoraxion . . tabiarasure
. . . ESSIca sim
similarity between ) HridHan — A net_jackson -
artists? eiffel_65~  whitney.
: celine dlorﬂ,et shop_boys
- pattern recognition lauryRNRIina_aguileggyua o
. S sade
backstPesap
systims give a - DacksteEBIR nveinmadannae”
numaoer... Afoquai nelly_guitrddennox
Which artist is most similar to:  Need subjective ground truth:
Janct Jacksont Collected via web site
LR Kelly WWW.musicseer.com
2. Paula Abdul _
3. Adliyah
4. Ml Vi  Results:
e - 1,000 users, 22,300 judgments
7. Garbage collected over 6 months
8. Pink

9. Christina A guilera

Lab
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Independent Component Analysis (ICA)
(Bell & Sejnowski 1995 et seq.)

 Drive a parameterized separation algorithm to
maximize independence of outputs

O e
N |
O =

 Advantages:
- mathematically rigorous, minimal assumptions
- does not rely on prior information from models

 Disadvantages:
- may converge to local optima...
- separation, not recognition
- does not exploit prior information from models

Lob
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