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The Problem of Mixtures

“Imagine two narrow channels dug up from the edge of a
lake, with handkerchiefs stretched across each one.
Looking only at the motion of the handkerchiefs, you are
to answer questions such as: How many boats are there
on the lake and where are they?” (after Bregman’90)

® Received waveform is a mixture
O 2 sensors, N sources - underconstrained
® Undoing mixtures: hearing’s primary goal?

O .. by any means avallable ¥
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Sound Organization Scenarios

® [nteractive voice systems
O human-level understanding Is expected

® Speech prostheses
O crowds: # | complaint of hearing aid users

® Archive analysis
O identifying and isolating sound events
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® Unmixing/remixing/enhancement...
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How Can We Separate?

® By between-sensor differences (spatial cues)
O ‘steer a null’ onto a compact interfering source
O the filtering/signal processing paradigm

® By finding a ‘separable representation’
O spectral! sources are broadband but sparse
O periodicity! maybe — for pitched sounds
O something more signal-specific...

® By (based on knowledge/ )

O acoustic sources are

— use part to guess the remainder
- limited possible solutions
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Separation vs. Inference

® |deal separation is rarely possible
O 1.e. no projection can completely remove overlaps

® Overlaps = Ambiguity
O scene analysis = find “most reasonable™ explanation
® Ambiguity can be expressed probabilistically
O .e. posteriors of sources {Si} given observations X:

P({S;}| X) = P(X [{S;}) P({S;})

® Better — better inference

O . learn from examples!

o
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A Simple Example

® Source models are
from separate subspaces

Codebooks
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A Slightly Less Simple Example

® Sources with Markov transitions

Source state means Observation sequence (sum of both sources)
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What is a Source Model?

° describes signal behavior

O encapsulates constraints on form of signal

O (any such constraint can be seen as a model...)

® A model has parameters
O + parameters
— Instance

Excitation
source g[n]

n

® \What is not a source model?

O detall not provided In instance

e.g. using phase from original mixture

O constraints on interaction between sources
e.g. Independence, clustering attributes

Lab
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Outline

Mixtures and Models

Human Sound Organization
O Audritory Scene Analysis
o Using source characteristics
O |llusions

Machine Sound Organization
Ambient Sounds
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Auditory Scene Analysis

® How do people analyze sound mixtures!?
O break mixture into small elements (in time-freq)
O elements are grouped In to sources using cues
O sources have aggregate attributes

® Grouping rules (Darwin, Carlyon, ...):
O cues: common onset/modulation, harmonicity, ...

O
; r;\:pe)t @a\nts So?( |
Sound Frequency ~| Harmonicity | Grouping | Source (after Darwin
| analysis > map /; mechanism ™ properties 1996)
N
‘ ”)
® Also learned (for speech etc.) N
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Perceiving Sources

® Harmonics distinct in ear, but perceived as
One Source (“fused”): 806 X! Detuned harmonic ‘
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® Experimental techniques T
O ask subjects “how many” oo ;
O match attributes e.g. pitch, vowel identrty
Lgb ©brain recordings (EEG "mismatch negativity”) *
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Auditory “lllusions™

® How do we explain illusions? _,
O pulsation threshold o S
£ / - 2000 --,__,
? 0
~ .

time

O sinewave speech

O phonemic restoration

® Something is providing the

missing (illusory) pieces ...
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Human Speech Separation

Brungart
® Task: Coordinate Response Measure
O “Ready Baron go to green eight now”
0 256 variants, |6 speakers
O correct = color and number for “Baron”

® Accuracy as a function of spatial separation:
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Separation by Vocal Differences

® CRM varying the level and voice character
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Outline

Mixtures and Models
Human Sound Organization

Machine Sound Organization
O Computational Auditory Scene Analysis
O Dictionary Source Models

Ambient Sounds
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Source Model Issues

® Domain
O parsimonious expression of constraints
O nice combination physics

® Tractability

O size of search space

O tricks to speed search/inference
® Acquisition

O hand-designed vs. learned

O static vs. short-term

® Factorization
O independent aspects

O hierarchy & specificity
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Computational Auditory
Scene Analysis

® Central idea:
Segment time-frequency into sources
based on perceptual grouping cues

Segment Group
input signal discrete
mixture Front end features Objeg:t objects Grouplng Source
(maps) formation rules > groups
T By ] “
j - sBonay | B "
- e

time

O ... principal cue Is harmonicity
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CASA limitations

® [imitations of T-F masking
O cannot undo overlaps — leaves gaps

® Typically driven by local features
O [imrited scope — no Inference or illusions
® Processing hand-defined, not learned
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Can Models Do CASA?

can learn harmonicity, onset
O ... to subsume rules/representations of CASA
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O can capture spatial info too

® (Can also capture sequential structure
O e.g. consonants follow vowels
O .. like people do!?

® But: need source-specific models

.. for every possible source
Lgp ©use model adaptation?
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Separation or Description?

® Are isolated waveforms required!?
O clearly sufficient, but may not be necessary
O not part of perceptual source separation!

® |ntegrate separation with application!?

Ce.g
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mix | | tfmasking |' words mix identif | findbest | words
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Lab O words output = abstract description of signal o
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Dictionary Models

® Given models for sources,
find “best” (most likely) states for spectra:

P(X!ilaiz) — N(X;Cil ‘|‘Ci272) model
{i)(2),ix(t) } = argmax;, ;,p(X(t)|i1,i) [nference of

source state
O can include sequential constraints...

O different domains for combining ¢ and defining %
® E.g.stationary noise:
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Speech Recognition Models
® Cooke & Lee Speech Separation Challenge

O short, grammatically-constrained utterances:

<command:4><color:4><preposition:4><letter:25><number:10><adverb:4>
e.g. "bin white by R 8 again"

O task: report letter+number for “white”

® Decode with Factorial HMM

O .e.two state sequences, one model for each voice
O exploit sequence constraints
O exploit speaker differences
® |[BM “superhuman” system
O fewer errors than people for same speaker, level
O explorts known speakers, imrted grammar
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Speaker-Adapted (SA) Models

® Factorial HMM needs distinct speakers

Mixture: t32_swil2a_m18_sbar9n

O use “eligenvoice’ speaker space

Adaptation iteration 1
- _

|
|
|
|

O rterate estimating voice &
separating speech -

oNn O

O performs midway between
speaker-independent (SI) and
speaker-dependent (5D)
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(Pitch) Factored Dictionaries

® Separate representations for
“source” (pitch) and “filter”

Mixed Signal, s™*[n]
o NM codewords #[n] g Y l #n]
from N+M entries ) mask rM S4E_I’""2 g
O but: overgeneration... A E| |3
Extraction f, — g —> g
® Faster search b 1

O direct extraction of pitches

O immediate separation of Tl
(most of) spectra
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Outline

Mixtures & Models
Human Sound Organization
Machine Sound Organization

Ambient Sounds
O binaural separation
O “personal audio” analysis
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Binaural Localization by EM

® 7 or 3 sources in reverberation

® [teratively estimate ILD, IPD
O inrtialize from PHAT [TD histogram

O output Is soft [F mask

Ground Truth DUET
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“Personal Audio’ Archives

® Continuous recordings
with MP3 player
® Segment / cluster “episodes”

O .. by statistics of ~10 s segments
O . for browsing interface
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Personal Audio Speech Detection

® Pitch is last speech cue to disappear
O noise robust pitch tracker for voice detection

O biggest problem was periodic noise
(alr conditioning)

Personal Audio - Speech + Noise
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Repeating Events in Personal Audio

® “Unsupervised” feature to help browsing

® Full NxN search is very expensive
O use Shazam fingerprint hashes to find repeats

Phone ring - Shazam fingerprint

freq / kHz

: | ST e A | . -80
0 0.5 1 1.5 2 25 tme/s level / dB

O only works for exact repeats (alarms, jingles)

® O(N) scan for repeats
O fixed-size hash table
O multiple common hashes — confident match ¥
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Summary & Conclusions

® [isteners do well separating sound mixtures
O using signal cues (location, periodicity)
O using source-property variations

® Machines do less well
O difficult to apply enough constraints
O need to explort signal detall

® capture constraints
O |earn from the real world
O adapt to sources

® Separation feasible only sometimes
O describing source properties Is easier

Lab

Sound Source Models - Dan Ellis 2007-05-24 - 30/30

Laboratory for the Recognition and
QOrganization of Speech and Audio
CovrumBiA [ JNIVERSITY
IN THE CITY OF NEW YORK



