Sound, Mixtures, and Learning: LabROSA overview

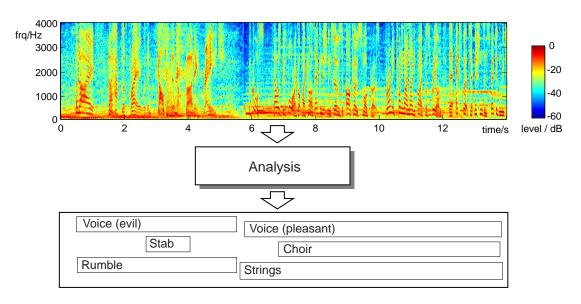
- Sound Content Analysis
- 2 Recognizing sounds
- Organizing mixtures
- 4 Accessing large datasets
- Music Information Retrieval

Dan Ellis <dpwe@ee.columbia.edu>

Laboratory for Recognition and Organization of Speech and Audio (LabROSA)

Columbia University, New York http://labrosa.ee.columbia.edu/

Sound Content Analysis



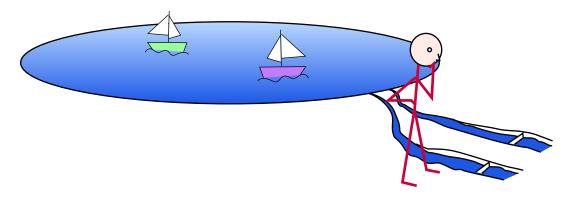
Sound understanding: the key challenge

- what listeners do
- understanding = abstraction

Applications

- indexing/retrieval
- robots
- prostheses

The problem with recognizing mixtures



"Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?" (after Bregman'90)

- Auditory Scene Analysis: describing a complex sound in terms of high-level sources/events
 - ... like listeners do
- Hearing is ecologically grounded
 - reflects natural scene properties = constraints
 - subjective, not absolute

Auditory Scene Analysis

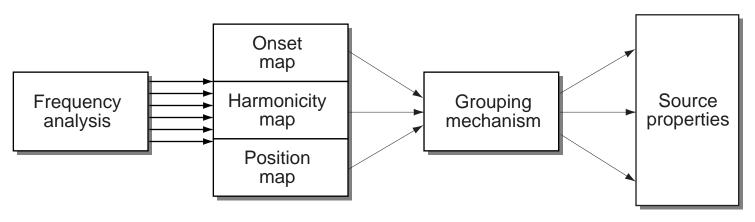
(Bregman 1990)

How do people analyze sound mixtures?

- break mixture into small *elements* (in time-freq)
- elements are *grouped* in to sources using *cues*
- sources have aggregate attributes

Grouping 'rules' (Darwin, Carlyon, ...):

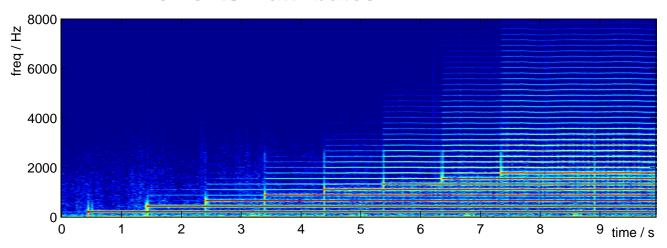
cues: common onset/offset/modulation, harmonicity, spatial location, ...



(after Darwin, 1996)

Cues to simultaneous grouping

Elements + attributes



Common onset

- simultaneous energy has common source

Periodicity

- energy in different bands with same cycle

Other cues

- spatial (ITD/IID), familiarity, ...

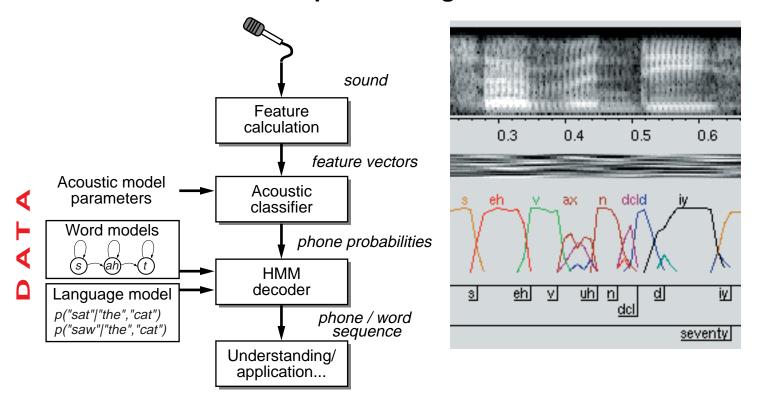
• But: Context ...

Outline

- 1 Sound Content Analysis
- 2 Recognizing sounds
 - Speech recognition
 - Nonspeech
- **3** Organizing mixtures
- 4 Accessing large datasets
- **5** Music Information Retrieval

Recognizing Sounds: Speech

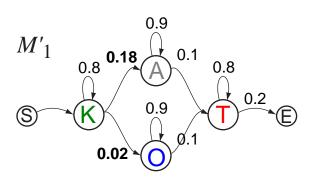
Standard speech recognition structure:

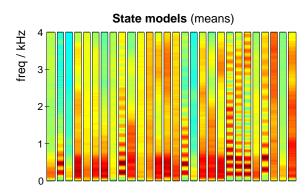


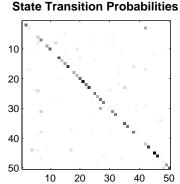
- How to handle additive noise?
 - just train on noisy data: 'multicondition training'

How ASR Represents Speech

Markov model structure: states + transitions

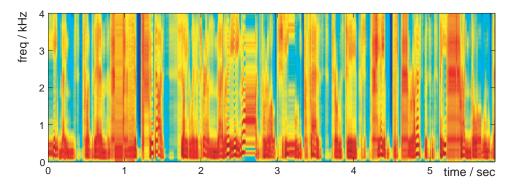






A generative model

but not a good speech generator!



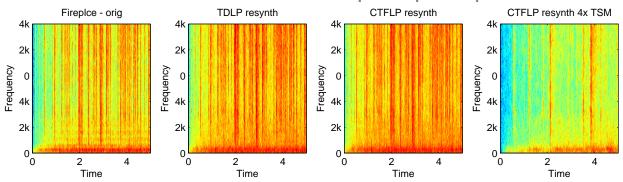
- only meant for inference of p(X|M)

Novel speech signal representations

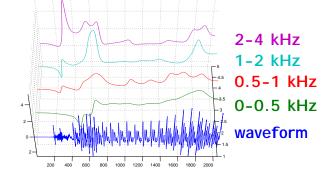
(with Marios Athineos)

Common sound models use 10ms frames

- but: sub-10ms envelope is perceptible



 Use a parametric (LPC) model on spectrum



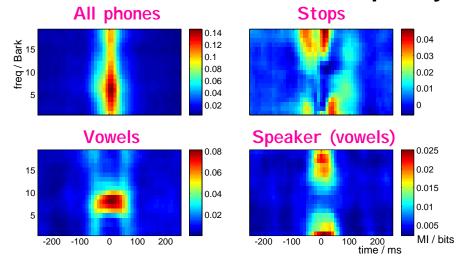
Convert to features for ASR

- improvements esp. for stops

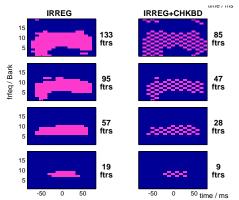
Finding the Information in Speech

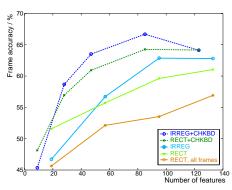
(with Patricia Scanlon)

Mutual Information in time-frequency:



Use to select classifier input features



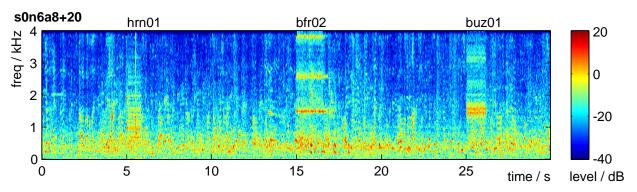


Alarm sound detection

(Ellis 2001)

Alarm sounds have particular structure

- people 'know them when they hear them'
- clear even at low SNRs



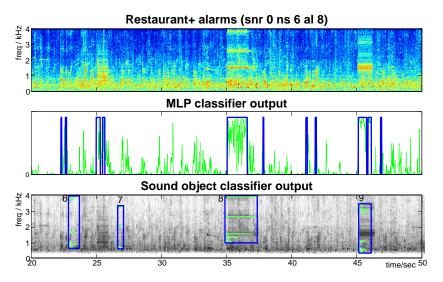
Why investigate alarm sounds?

- they're supposed to be easy
- potential applications...

Contrast two systems:

- standard, global features, P(X|M)
- sinusoidal model, fragments, P(M,S|Y)

Alarms: Results



 Both systems commit many insertions at 0dB SNR, but in different circumstances:

Noise	Neural net system			Sinusoid model system		
	Del	Ins	Tot	Del	Ins	Tot
1 (amb)	7 / 25	2	36%	14 / 25	1	60%
2 (bab)	5 / 25	63	272%	15 / 25	2	68%
3 (spe)	2 / 25	68	280%	12 / 25	9	84%
4 (mus)	8 / 25	37	180%	9 / 25	135	576%
Overall	22 / 100	170	192%	50 / 100	147	197%

2003-09-24 - 12

Outline

- 1 Sound Content Analysis
- 2 Recognizing sounds
- Organizing mixtures
 - Auditory Scene Analysis
 - Missing data recognition
 - Parallel model inference
- 4 Accessing large datasets
- **5** Music Information Retrieval

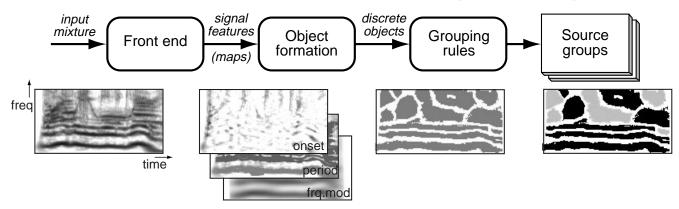
Organizing mixtures: Approaches to handling overlapped sound

- Separate signals, then recognize
 - e.g. CASA, ICA
 - nice, if you can do it
- Recognize combined signal
 - 'multicondition training'
 - combinatorics...
- Recognize with parallel models
 - full joint-state space?
 - or: divide signal into fragments, then use missing-data recognition

Computational Auditory Scene Analysis: The Representational Approach

(Cooke & Brown 1993)

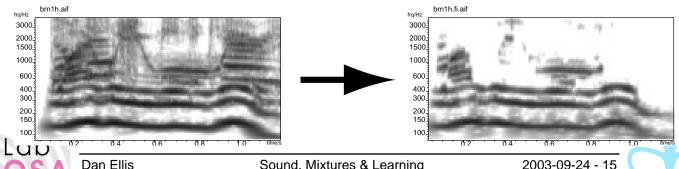
Direct implementation of psych. theory



'bottom-up' processing

Laboratory for the Recognition and

- uses common onset & periodicity cues
- Able to extract voiced speech:



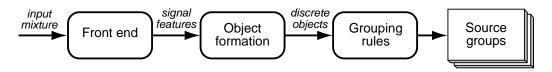
Sound, Mixtures & Learning

2003-09-24 - 15

Adding top-down constraints

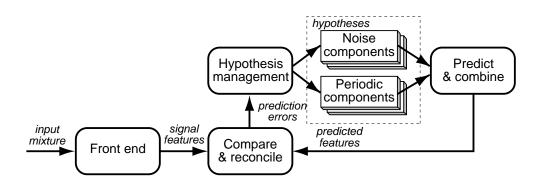
Perception is not direct but a search for plausible hypotheses

Data-driven (bottom-up)...



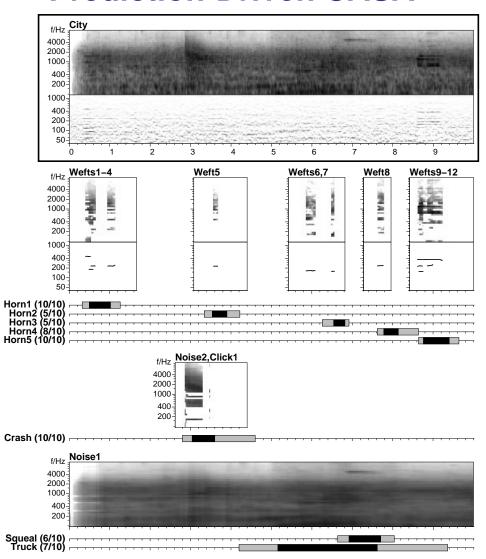
objects irresistibly appear

vs. Prediction-driven (top-down)



- match observations with parameters of a world-model
- need world-model constraints...

Prediction-Driven CASA



Dan Ellis

time/s

-50-

-60-

-70dB

Segregation vs. Inference

Source separation requires attribute separation

- sources are characterized by attributes (pitch, loudness, timbre + finer details)
- need to identify & gather different attributes for different sources ...

Need representation that segregates attributes

- spectral decomposition
- periodicity decomposition

Sometimes values can't be separated

- e.g. unvoiced speech
- maybe infer factors from probabilistic model?

$$p(O, x, y) \rightarrow p(x, y|O)$$

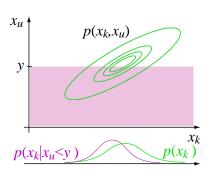
- or: just skip those values,
 infer from higher-level context
- do both: missing-data recognition

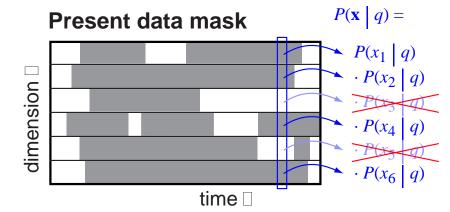
Missing Data Recognition

- Speech models $p(\mathbf{x}|m)$ are multidimensional...
 - i.e. means, variances for every freq. channel
 - need values for all dimensions to get $p(\bullet)$
- But: can evaluate over a subset of dimensions x_k

$$p(\mathbf{x}_k|m) = \int p(\mathbf{x}_k, \mathbf{x}_u|m) d\mathbf{x}_u$$

Hence, missing data recognition:





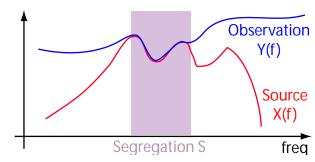
hard part is finding the mask (segregation)

Comparing different segregations

 Standard classification chooses between models M to match source features X

$$M^* = \underset{M}{\operatorname{argmax}} P(M|X) = \underset{M}{\operatorname{argmax}} P(X|M) \cdot \frac{P(M)}{P(X)}$$

• Mixtures \rightarrow observed features Y, segregation S, all related by P(X|Y,S)



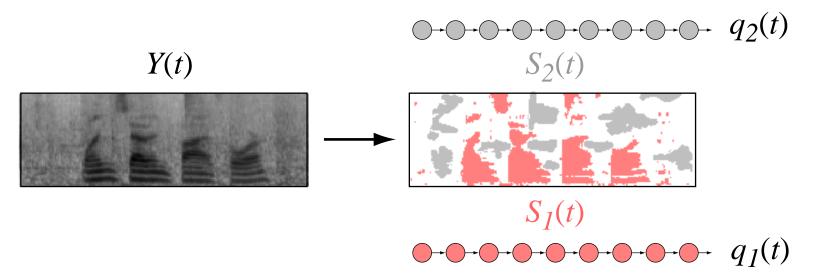
- spectral features allow clean relationship
- Joint classification of model and segregation:

$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$

probabilistic relation of models & segregation

Multi-source decoding

Search for more than one source



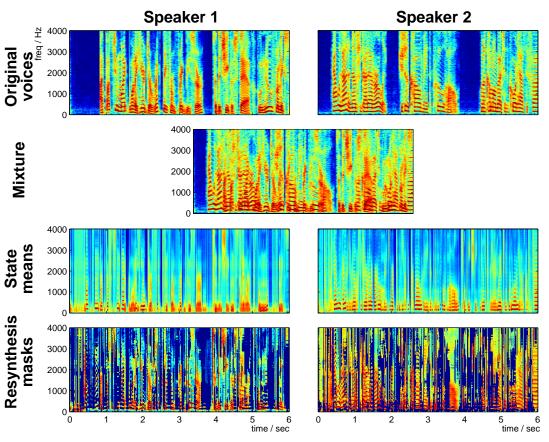
- Mutually-dependent data masks
- Use e.g. CASA features to propose masks
 - locally coherent regions
- Lots of issues in models, representations, matching, inference...

2003-09-24 - 21

"One microphone source separation"

(Roweis 2000, Manuel Reyes)

State sequences → t-f estimates → mask



- 1000 states/model (\rightarrow 10⁶ transition probs.)
- simplify by modeling subbands (coupled HMM)?

Outline

- 1 Sound Content Analysis
- 2 Recognizing sounds
- 3 Organizing mixtures
- 4 Accessing large datasets
 - Meeting Recordings
 - The Listening Machine
- **5** Music Information Retrieval

Accessing large datasets: The Meeting Recorder Project

(with ICSI, UW, IDIAP, SRI, Sheffield)

- Microphones in conventional meetings
 - for summarization / retrieval / behavior analysis
 - informal, overlapped speech
- Data collection (ICSI, UW, IDIAP, NIST):

- ~100 hours collected & transcribed
- NSF 'Mapping Meetings' project

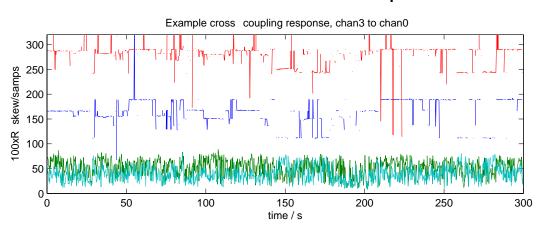
Speaker Turn detection

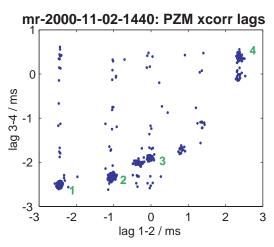
(Huan Wei Hee, Jerry Liu)

Acoustic:

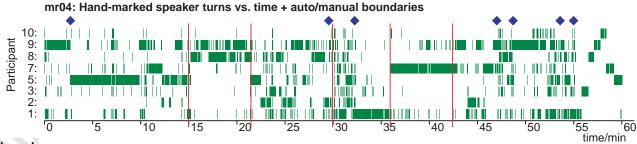
Triangulate tabletop mic timing differences

use normalized peak value for confidence



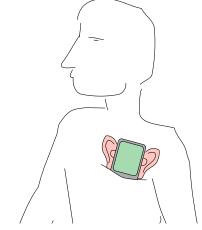


Behavioral: Look for patterns of speaker turns



The Listening Machine

- Smart PDA records everything
- Only useful if we have index, summaries
 - monitor for particular sounds
 - real-time description
- Scenarios



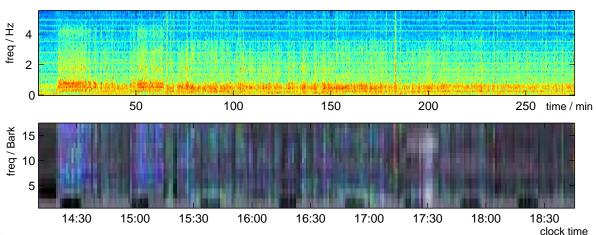
- personal listener → summary of your day
- future prosthetic hearing device
- autonomous robots
- Meeting data, ambulatory audio

2003-09-24 - 26

Personal Audio

LifeLog / MyLifeBits /
Remembrance Agent:
Easy to record everything you
hear

- Then what?
 - prohibitively time consuming to search
 - but .. applications if access easier
- Automatic content analysis / indexing...



<u>+</u>

Outline

- 1 Sound Content Analysis
- 2 Recognizing sounds
- **3** Organizing mixtures
- 4 Accessing large datasets
- Music Information Retrieval
 - Anchor space
 - Playola browser

Music Information Retrieval

- Transfer search concepts to music?
 - "musical Google"
 - finding something specific / vague / browsing
 - is anything more useful than human annotation?
- Most interesting area: finding new music
 - is there anything on mp3.com that I would like?
 - audio is only information source for new bands
- Basic idea: Project music into a space where neighbors are "similar"
- Also need models of personal preference
 - where in the space is the stuff I like
 - relative sensitivity to different dimensions
- **Evaluation problems**
 - requires large, shareable music corpus!

Artist Similarity

- Recognizing work from each artist is all very well...
- But: what is similarity between artists?
- pattern recognition systems give a number...

Which artist is most similar to: Janet Jackson?

- 1. R. Kelly
- 2. Paula Abdul
- 3. Aaliyah
- 4. Milli Vanilli
- 5. En Vogue
- 6. Kansas
- 7. Garbage
- 8. Pink
- 9. Christina Aguilera

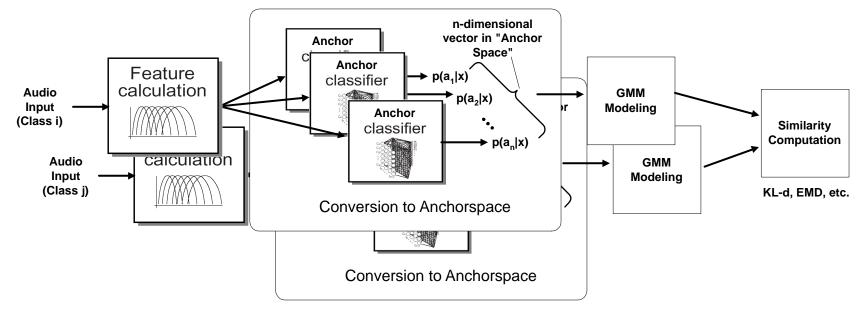
Need subjective ground truth: Collected via web site

www.musicseer.com

- Results:
 - 1,000 users, 22,300 judgments collected over 6 months

Music similarity from Anchor space

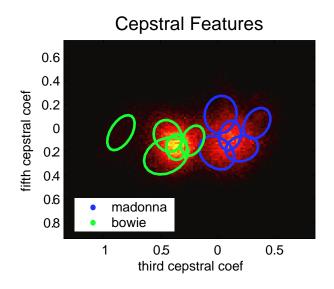
- A classifier trained for one artist (or genre)
 will respond partially to a similar artist
- Each artist evokes a particular pattern of responses over a set of classifiers
- We can treat these classifier outputs as a new feature space in which to estimate similarity

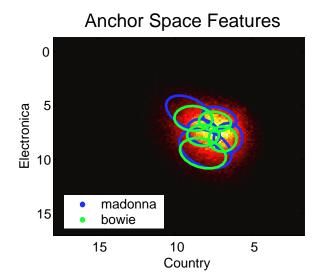


"Anchor space" reflects subjective qualities?

Anchor space visualization

 Comparing 2D projections of per-frame feature points in cepstral and anchor spaces:





- each artist represented by 5GMM
- greater separation under MFCCs!
- but: relevant information?

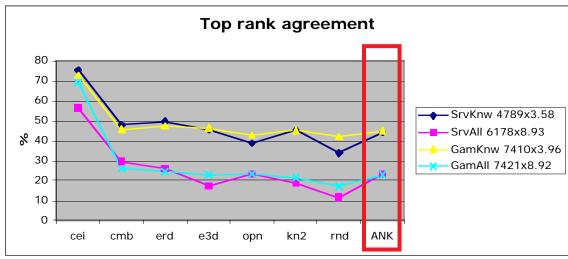
Playola interface (<u>www.playola.org</u>)

- Browser finds closest matches to single tracks or entire artists in anchor space
- Direct manipulation of anchor space axes



Evaluation

- Are recommendations good or bad?
- Subjective evaluation is the ground truth
 - .. but subjects aren't familiar with the bands being recommended
 - can take a long time to decide if a recommendation is good
- Measure match to other similarity judgments
 - e.g. musicseer data:



Summary

Sound

- .. contains much, valuable information at many levels
- intelligent systems need to use this information

Mixtures

- .. are an unavoidable complication when using sound
- looking in the right time-frequency place to find points of dominance

Learning

- need to acquire constraints from the environment
- recognition/classification as the real task

LabROSA Summary

- Broadcast
- Movies
- Lectures

- Meetings
- Personal recordings
- Location monitoring

ROSA

- Object-based structure discovery & learning
- Speech recognition
- Nonspeech recognition
- Scene analysis
- Speech characterization Audio-visual integration
 - Music analysis

APPLICATIONS

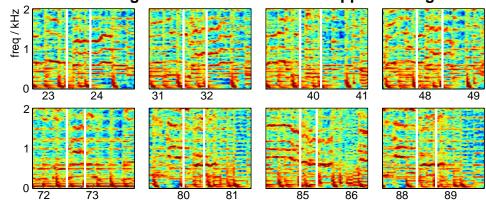
- Structuring
- Search
- **Summarization**
- Awareness
- Understanding

Extra Slides

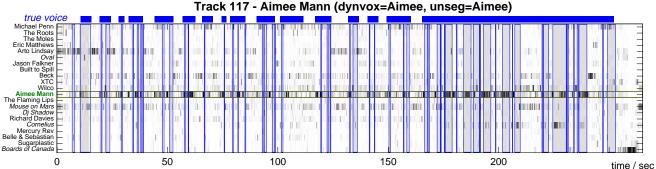
Music Applications

- Music as a complex, information-rich sound
- Applications of separation & recognition:
 - note/chord detection & classification

DYWMB: Alignments to MIDI note 57 mapped to Orig Audio



singing detection (→ genre identification ...)



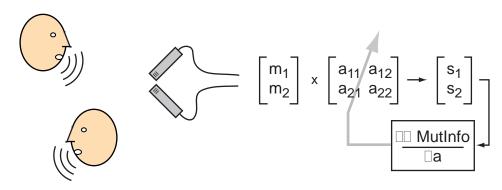
Dan Ellis

#

Independent Component Analysis (ICA)

(Bell & Sejnowski 1995 et seq.)

 Drive a parameterized separation algorithm to maximize independence of outputs



Advantages:

- mathematically rigorous, minimal assumptions
- does not rely on prior information from models

Disadvantages:

- may converge to local optima...
- separation, not recognition
- does not exploit prior information from models

