


## The 2007 LabROSA cover song detection system



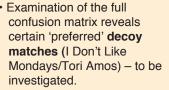
Dan Ellis & Courtenay Cotton • {dpwe,cvcotton}@ee.columbia.edu

Summary: A beat-synchronous chroma representation enables the matching of cover versions of popular music using global cross-correlation across time- and transposition-skew.

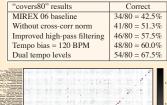


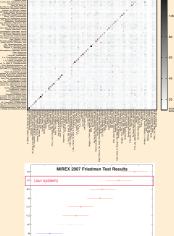
- genre, tempo, instrumentation, etc.
- · We strive for a representation of music audio largely invariant to such changes by:
  - beat-tracking to the dominant tempo
  - storing 12-dimensional **chroma** feature vectors, one per beat
- · This beat-chroma representation is compared between songs by cross-correlating entire songs (after normalization). All 12 possible transpositions are tested.
- · Cover Songs are alternative performances that frequently change · Normalization involves amplitude compression and high-pass filtering along time to emphasize changes and downweight sustained pitches.
  - Whole-song correlation can find only one best relative alignment. but we often find that even a small region of alignment leads to a clear peak value. It is implemented efficiently as a single FFT.
  - Examining the pointwise product of the beat-chroma matrices at their optimal alignment reveals which chroma and time bins are most responsible for the correlation score (green blobs in bottom left figure).

## Changes for 2007


- · We modified our 2006 Cover Song system [1] as follows:
- · Previously, we normalized each cross-correlation by the length of the shorter song to bound the maximum result. Removing normalization improved results.
- · High-pass filtering to emphasize locally-optimal skews used to be performed after cross-correlation; we now high-pass the beat-chroma before correlation, and optimized the filter.
- Our beat tracker includes a **tempo bias** towards a particular range. Before, we aimed for around 240 BPM to get a denser representation. Reducing to 120 BPM improved performance.
- Sometimes original and cover are beat-tracked at different metrical levels. Beat tracking twice, at 120 and 240 BPM, then choosing the best out of the 2x2 comparisons, fixed most of these.

## Data - "covers80" dataset & MIREX 2007


- · "covers80" is our development set of 80 pairs of pop-music cover songs drawn from uspop2002 and other sources.
- · MFCCs, Chroma features, etc. are available for download at http://labrosa.ee.columbia.edu/projects/coversongs/covers80/
- MIREX Cover Song evaluation has 330 covers among 1000 tracks.


## Results

· The modifications led to an overall 59% relative improvement over the 2006 on both covers80 accuracy and MIREX top-10 count.



Our system ranked 2nd of 8 in the 2007 MIREX evaluation, with a Mean AP of 0.330, compared to 0.521 for the best system (Serrá & Gómez). Their system also uses chroma, but aligns tracks by Dynamic Time Warping. We believe our correlation approach allows much faster comparisons.





[1] D. Ellis and G. Poliner, "Identifying Cover Songs With Chroma Features and Dynamic Programming Beat Tracking, Proc. ICASSP-07 Hawai'i, pp. IV-1429-1432.

MATLAB code to run this system is available at:

http://labrosa.ee.columbia.edu/projects/coversongs/