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1. Computational Research
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• 50 years of computational research (in SP):

201319881963

Accessible..

Coding 
time (FFT)

Within lab Researchers Anyone

1 month 1 day <1 minute
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The Paradigm
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argument

empirical
results

• Computational approaches can be very 
complex

• Proposed techniques are often elude 
theoretical analysis

• Empirical results are “the proof of the pudding”
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Example: Soundtrack Classification
• Trained models using “texture” features

• Results on 9,317 videos (210 hours)
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Presenting Results
• Traditional paper:

Compute times:

Results:
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SUBBAND AUTOCORRELATION FEATURES
FOR VIDEO SOUNDTRACK CLASSIFICATION

Courtenay V. Cotton, Daniel P. W. Ellis

LabROSA, Dept. of Electrical Engineering
Columbia University

{cvcotton,dpwe}@ee.columbia.edu

ABSTRACT
Inspired by prior work on stabilized auditory image fea-

tures, we have developed novel auditory-model-based fea-
tures that preserve the fine time structure lost in conventional
frame-based features. While the original auditory model is
computationally intense, we present a simpler system that
runs about ten times faster but achieves equivalent perfor-
mance. We use these features for video soundtrack classifi-
cation with the Columbia Consumer Video dataset, showing
that the new features alone are roughly comparable to tradi-
tional MFCCs, but combining classifiers based on both fea-
tures achieves a 15% improvement in mean Average Precision
over the MFCC baseline.

Index Terms— Acoustic signal processing, Multimedia
databases, Video indexing, Auditory models

1. INTRODUCTION

As the means to collect and share video and audio become
increasingly ubiquitous and cheap, automatic tagging and
retrieval of multimedia content becomes increasingly im-
portant. Although much research has focused on the visual

particularly useful for the identification of sounds in mix-
tures. Since we are working with broadly similar problems of
classifying unconstrained environmental audio, we attempt-
ing to replicate their system as closely as possible to test it on
a consumer video soundtrack retrieval task.

The next sections introduce our data/domain, and then de-
scribe our results using an available implementation of the au-
ditory model front-end, and our modified, simplified features
aiming to capture the same information. Sections 5 and 6 de-
scribe other experimentation with the original system, exper-
imenting with replacing the original PAMIR retrieval model
and with more common Support Vector Machine (SVM) clas-
sifiers, and with reduce the dimensionality of the representa-
tion. Section 7 describes the further improvements we ob-
tained by fusing these novel features with the existing base-
line MFCCs.

2. DATASET AND TASK

We performed all evaluations on the Columbia Consumer
Video (CCV) dataset [8]. This set of 9,317 video clips from
YouTube comprises 210 hours of video. The clips are tagged
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Fig. 1. Calculation of the SBPCA feature vectors.

the signal is passed through a time-varying filterbank model-
ing the cochlea, including local loudness adaptation through
changes in individual filter resonance. The filterbank out-
puts are then integrated using so-called strobed temporal in-
tegration. Strobe (peak) points are identified, and the signal
is cross-correlated with a sparse function that is zero except
at these strobe points. This is done separately in each fil-
ter channel, resulting in a two-dimensional (frequency chan-
nels⇥ time lags) image, termed the stabilized auditory image
(SAI). (In lieu of a more detailed description, please see the
presentation of our simplified auditory model features in sec-
tion 4). In their experiments an SAI is generated every 20
ms to characterize the audio signal at that point. Each SAI
is then overlaid with a set of rectangular patches of different
sizes, each defining a local region of interest. The patches
within each rectangle are collected over all data to build a
separate vector quantization (VQ) codebook for each rectan-
gle. A single SAI is then represented by a sparse code whose
dimensionality is the number of rectangles times the size of
each VQ codebook, and with just one nonzero element per
rectangle. An audio clip is represented as the average of its
SAI codes (essentially, a histogram).

To reproduce this system, we used a publicly-available
C++ codebase, AIM-C [9], that computes stabilized auditory
images that are closely related to those described in [1]. The
audio data is first downsampled to 16 kHz and processed with
AIM-C to produce a series of SAIs. The SAIs were then cut
into 24 rectangles, using the box-cutting method described in
[1], where the smallest boxes were 32 frequency channels by
16 time steps. Each dimension was then doubled systemati-
cally until the edge of the SAI was reached. We then down-
sampled and quantized each of the 24 rectangles with a 1000-
codeword dictionary learned by k-means on the training set.
This leads to a representation of each video clip as a sparse
24,000-element vector which is the concatenation of the his-
tograms of the VQ encodings over each of the 24 rectangles.

Table 1. Comparison of feature properties. Calculation times
are over the 210 h CCV data set on a single CPU.

MFCC SAI (reduced) SBPCA
Feature extraction 5.6 h 1087 h 310 h
Feature/patch dims 60 48 60
# patches/codebooks 1 24 (8) 4
Codebook size 3000 1000 1000
Histogram size 3000 24000 (8000) 4000

4. SUBBAND PCA FEATURES

As show in table 1 SAI feature calculation is almost 200⇥
more expensive than for MFCCs, and around 5⇥ slower than
real time. Since our target application is for large multime-
dia archives (thousands of hours), we were strongly moti-
vated to employ simpler processing. We reasoned that fine
time structure could still be captured without the complexity
of the adaptive auditory model and the strobing mechanism,
so we explored features based on a fixed, linear-filter cochlear
approximation, and conventional short-time autocorrelation,
based on previous work in pitch tracking [12]. These features
use Principal Component Analysis to reduce the dimension-
ality of normalized short-time autocorrelations calculated for
a range of auditory-model subbands, so we call them subband
PCA or SBPCA features. Figure 1 illustrates the entire calcu-
lation process for SBPCAs. First, a filterbank approximating
the cochlea is used to divide the incoming audio into 24 sub-
bands, spanning center frequencies from 100 Hz to 1600 Hz
with six bands per octave, and with a quality factor Q = 8. In
each subband, a normalized autocorrelation is calculated ev-
ery 10 ms over a 25 ms window. The autocorrelation features
are then run through principal component analysis (PCA) to
yield 10 PCA coefficients per subband for every 10 ms of
audio. Analogously to the SAI rectangle features, we then
collect subbands into 4 groups of 6 bands each. For each
10 ms frame, we vector quantize each block of 6 (subbands)
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Presenting Results
• Code & Data release

~5000 lines of Matlab
~5 GB of data
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2. Five Ways to Present Results

• Researchers want to present their results
“publish or perish”
paper & citation counts
impact & fame

• Math/Humanities model
the paper is the product

• Science/Engineering model
the paper describes the product
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Five Ways...
1. Traditional Publications 

pro: Present your “spin”
con: Not the whole story

2. Talks / Demos / videos 
pro: Quick hook
con: Distorting
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Five Ways...
3. Interactive demos

pro: Let people ask their own 
       questions
con: Substantial additional 
       development

4. Libraries / APIs 
pro: Promotes uptake
con: Development and 
       support liability
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The Fifth Way: Code Sharing
• Complete description of what you did

“share the research equipment”

• Pros
every detail, regardless 
of your spin
allows replication & reuse
the best way to uncover 
bugs

• Cons
time to prepare
dirty laundry
competitive edge
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3. Sharing Code
• Code Sharing & the Scientific Mission

Scientific fields traditionally struggle to develop 
reproducible protocols
Commodity computers & software support 
unprecedented reproducibility

• Barriers [Stodden 2010]
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The Future of Sharing Code
• The opportunity to share code is novel

Better, more consistent, high-level platforms
Open Source movement

• There are drawbacks
Time to prepare
Fear of humiliation

• There are huge advantages
Scientific mission: reproduction, verification, debugging
Impact
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4. Conclusions
• Computational research is qualitatively different

and great
but hard to comprehend

• Traditional publications describe superficially
not a good match
editorial choices about “what matters”

• Cheap & powerful computers support 
code sharing
“if I can’t fix it, I don’t own it”
but: airing dirty laundry

• Waiting for a generational change...

13


