Columbia: Recent + Future

® Better classifiers
- Ml-based broad-class experts
® Reducing variability
- lTemporal variation
- Formant “automatic gain control” (AGC)

® Signal model
- "Deformable spectrograms”
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Broad-Class Experts

* MIl-based feature make superior class-
specific classifiers (vowels, stops...)

e smaller models: good for data-limrted case
* Apply to ASR by ‘patching in’ probabilities via
separate
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Ml-Based Class Experts
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phones

® |dea: Different speech ::
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® Good for reducing model complexity
- benefits disappear given enough data

® Not measuring joint Ml
= quick hack: checkerboard
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Broad-Class Detector

® Expert gives Pr(phone | class, features)

- still need

® Repeat same approach
- separate detectors for each broad class

- measure Ml from TF cell to class
- train MLP from those features

® False accept/false detect tradeoff
- try to detect only center of phone

- reasonable vowel recognition with
| 0% Insertions (6.3% deletions) of centers
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Overall System

® ‘Patch in’ expert’s posteriors:
P(qi|X) = E P(gi|class,X) - P(class|X)
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- ‘non-expert MLP for when P(class|X) are small
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® Still looking at:
= using more experts

- better P(class|X)

Decoder

Baseline: 28.4%

i~ Oracle P(VC): 26.9%

Real P(VC):  28.0%
Vowels+Frics: 2/7.6%
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Temporal Variation

|dea:

Normalize phone durations by averages
- ..to reveal per-speaker bias
= ..and timing variation within phrases

® Focus on vowels = e e
- per-phone %m;,ﬁ%ﬁﬂme sl o Lo,
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® Use to vary sampling/modeling?



Formant AGC

® Hypothesis:

Casual speech has ‘compressed’ formant motion

- can we ‘enhance’ format motions
to make speech more canonical / read-like?
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Read vs. Spontaneous

® Speaker-dependent means, vars of PLP pole
locations in read vs. spontaneous speech
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- variance of angle of pole 3 discriminates well for
red and green speakers - but opposite changes!
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Deformable Spectra

® Accurate spectral modeling in
conventional HMMs requires 1000s of states
- cumbersome, especially transition matrices

® Observation:

Speech spectra undergo minor deformations
- suggests a different generative model:
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States+ [ransformation Model

® Time-frequency state grid
® State —
- explicit prototype
= or a transformation
on prior frame

® |nfer underlying states

Green:
.| Identity transform

==
Yellow/Orange:

Upward motion
(darker is steeper)

m
Blue:

— - 3 : Downward motion
a) Signal b) Transformation Map (darker is steepqry [
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Two-layer model

® Source-filter decomposition
- prtch and formants have different dynamics

® Apply transformation models for both
- |log-spectra:

sum of excitation & filter

- Inference does separation




