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Source Models and Scene Analysis
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® Sounds rarely occur in isolation
O .. so analyzing mixtures (“'scenes”) Is a problem
O .. for humans and machines

® How to solve this problem?
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Approaches to Separation

ICA CASA Model-based
* Multi-channel * Single-channel ¢ Any domain
* Fixed filtering * [ime-var. filter ¢ Param. search
» Perfect separation ¢ Approximate * Synthetic
— maybe! separation output?
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O or combinations ...
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Separation vs. Inference

® |deal separation is rarely possible
O many situations where overlaps cannot be removed

® Overlaps = Ambiguity
O scene analysis = find “most reasonable™ explanation

® Ambiguity can be expressed probabilistically
O |.e. posteriors of sources {S;} given observations X:

P({S;}| X) « PX|{S;5) 11; P(S;|M;)
combination physics
o search over all source signal sets {S;}

® Better — better inference

e
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A Simple Example

® Source models are
from separate subspaces

Codebooks
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A Slightly Less Simple Example

® Sources with Markov transitions

Source state means Observation sequence (sum of both sources)
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What is a Source Model!

° describes signal behavior
O encapsulates constraints on form of signal
O (any such constraint can be seen as a model...)

® A model has parameters

0 + parameters Somen | [ ecmms | M
— instance ; SN,

® What is not a source model?
O detall not provided In instance
e.g. using phase from original mixture

O constraints on Interaction between sources
e.g. Independence, clustering attributes
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Using Models: Speech Separation

® Cooke & Lee’s Speech Separation Challenge

O pairs of short, grammatically-constrained utterances:
<command:4><color:4><preposition:4><letter:25><number:10><adverb:4>
e.g.

O task: report letter + number for “white”

O (special session at Interspeech '06)

® Separation or Description!?

| separation |
mix | | tfmasking |' words mix identif | findbest | words

! > + resynthesis [>] ASR target engrgy >l words model [
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| | identify | speech speech
| | target energy '|  models models
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! source |
. knowledge !
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Codebook Models

® Given models for sources,
find “best” (most likely) states for spectra:

P(X\ilaiz) — N(X§Ci1 ‘|‘Ci272) model

{i1(t),i2(1)} = argmax;, ,p(x(t)]i1, i) Iference of

O can include sequential constraints...

® E.g. stationary noise:

In speech-shaped noise VQ inferred states
(mel magsnr = 2.41 dB) (mel magsnr = 3.6 dB)
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Speech Recognition Models

® Speech recognizers contain speech models
o ASR s just argmax P(W | X)

® Recognize mixtures with Factorial HMM
O |.e. two state sequences, one model for each voice
O exploit sequence constraints, speaker differences

s1(1) ——> 51(2) —>»{ s1(7)
s2(1) > s2(2) —>{ 52(7)
model1 e——e—e—¢ ¢ ——°

observations / time 'l'
Lab
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Speech Factorial Separation

® |[BM’s 2006 Iroquois speech separation system
Key features: oy il e
O detailed state combinations |
O large speech recognizer
O exploits grammar constraints
O 34 per-speaker models

® “Superhuman” performance
O ...In some condrtions
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Adapting Source Models

® Power of model-based separation depends
on detail of model

® Speech separation relies on prior knowledge
of every speaker?
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® Can this be practical?
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Eigenvoices

® |dea:

ldentify manifold in model parameter space
O generalize without losing detalil?

I_ b O Speaker models ——== Speaker subspace basis vectors [ Other models Ill
Learning, Using, Adapting Models - Dan Ellis 2009-04-23 - 13/22
Laboratory for the Recognit d
Org tion of Speech and Audi

CorumsiA [JNIVERSITY
IN THE CITY OF NEW YORK



® Mean model H!I HI i | ' u w
© 280 states x 320 bins ‘ W ‘M N| | \\""“' w
= 89,600 dimensions bd“tmm Umyﬁﬁ,wﬂﬂﬁ;'mﬂmmg

V

“‘ﬁ llmmuimmmmwm Mhuwmmi j
shift formants/
coloration E'“-‘Jkl\iWi %\l‘&ﬂmllnful W Z
O additional £ " E@ 2

components for Sb“i”m“ @mm$$y“y wayansoowun |
channel %j;' | j

o, il
® |C VLN TR (e o b
L bdgptkichs z fthvdn

Learning, Using, Adapting Models - Dan Ellis 2009-04-23 - 14/22 w

CovrumBiA [ JNIVERSITY
IN THE CITY OF NEW YORK




Speaker-Adapted Separation

® Factorial HMM analysis
with tuning of source model parameters
= eigenvoice speaker adaptation
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Speaker-Adapted Separation

® FEigenvoices for Speech Separation task

O speaker adapted (5A) performs midway between
speaker-dependent (5D) & speaker-indep (5))
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Combining Spatial + Speech Model

® [nteraural parameters give

ILD{w), ITD;, Pr(X(t, w) = St, w))
® Speech source model can give

Pr(Si(z, w) is speech signal)

® Can combine into one big

E-step
p(u|©®™) = p(z, u|©0™) /p(z|0)

u is: Pr(cell from source i)
bhoneme sequence

M-step @ is: interaural params

Q(n+1) _ argrgax E, o) (T, u|O) speaker params

o>
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Combining Spatial + Speech Model

® Source models function as priors

® |nteraural parameter spatial separation
O EM estimation of [+ masks, spatial origin
O source model prior improves spatial estimate
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Source Model Issues

® Model Domain

O parsimonious expression of constraints

O nice combination physics
® Tractability

O size of search space

O tricks to speed search/inference
® Acquisition *

O hand-designed vs. learned

O static vs. short-term

® Factorization
O iIndependent aspects
O hierarchy & specificity *
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Learning Source Models

® Speech models learned from labeled data
O single, known speaker + transcripts
O data fully aligned to models

® Otherwise ...
o walit for “clear shot’”?
O reinforce based on

best-guess separation? | . i}
o ML model updates? : S T

Lab

Learning, Using, Adapting Models - Dan Ellis 2009-04-23 -20/22

Laboratory for the Recognition and
Organization of Speech and Audio

CorumsiA [JNIVERSITY
IN THE CITY OF NEW YORK



How Many Models!?

More specific models — better separation
O need individual dictionaries for “everything ??

Model adaptation and hierarchy Smith, Patterson

tal. 05
O speaker adapted models : i
base + parameters

fa/-hu/

50

O extrapolation beyond normal

VT length ratio
o

2
1o 10" bitch / Hz

Time scales of model acquisition

O innate/evolutionary (hair-cell tuning)

O developmental (mother tongue phones)
O dynamic - the “Bolero” effect
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Summary & Conclusions

® Source models provide the constraints to
make scene analysis possible

° (model subspace) can be used
to provide detailed models that generalize

® [t is not clear how to extend this to all
possible sounds, present and future

® Relevance to perception?

I
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