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 Auditory Scene Analysis: describing a complex
sound in terms of high-level sources/events

- ... like listeners do

« Hearing is ecologically grounded
- reflects ‘natural scene’ properties
- subjective, not absolute
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freq / kHz

Sound, mixtures, and learning
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e Sound
- carries useful information about the world
- complements vision

 Mixtures
- .. are the rule, not the exception
- medium is ‘transparent’, sources are many
- must be handled!

e Learning

- the ‘speech recognition’ lesson:
let the data do the work

- like listeners
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The problem with recognizing mixtures

“Imagine two narrow channels dug up from the edge of a
lake, with handkerchiefs stretched across each one.
Looking only at the motion of the handkerchiefs, you are
to answer questions such as: How many boats are there
on the lake and where are they?” (after Bregman’90)

 Received waveform is a mixture
- two sensors, N signals ... underconstrained

 Disentangling mixtures as the primary goal?
- perfect solution is not possible
- need experience-based constraints

Sound, mixtures, learning - Dan Ellis 2003-03-20 - 4/33

NS

Laboratory for the Recognition and



Human Auditory Scene Analysis
(Bregman 1990)

« How do people analyze sound mixtures?
- break mixture into small elements (in time-freq)
- elements are grouped in to sources using cues
- sources have aggregate attributes

 Grouping ‘rules’ (Darwin, Carlyon, ...):
- cues: common onset/offset/modulation,
harmonicity, spatial location, ...

Onset .
map
Frequency Harmonicity Grouping | Source
analysis map mechanism properties
Position
map N

(after Darwin, 1996)
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Cues to simultaneous grouping

e Elements + attributes
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e Common onset
- simultaneous energy has common source

* Periodicity
- energy in different bands with same cycle

o Other cues
- spatial (ITD/IID), familiarity, ...
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The effect of context

« Context can create an ‘expectation’:
I.e. a bias towards a particular interpretation

 e.g.Bregman’s “old-plus-new” principle:
A change in a signal will be interpreted as an
added source whenever possible
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- a different division of the same energy
depending on what preceded it
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Computational Auditory Scene Analysis

(CASA)
| | ' o Object 1 description
@ — | cAsA Object 2 description
”))) Object 3 description

e Goal: Automatic sound organization ;
Systems to ‘pick out’ sounds in a mixture

- ... like people do

« E.g.voice against a noisy background
- to improve speech recognition

 Approach:
- psychoacoustics describes grouping ‘rules’
- ... just implement them?
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The Representational Approach
(Brown & Cooke 1993)

 Implement psychoacoustic theory

input signal discrete
mixture Front end features Object objects Grouping Source
(maps) formation rules > groups
J
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- ‘bottom-up’ processing
- uses common onset & periodicity cues

 Able to extract voiced speech:
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Restoration in sound perception

o Auditory ‘illusions’ = hearing what’s not there
« The continuity illusion
f/Hz :ptshort
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- duplex perception
« How to model in CASA?
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Adding top-down constraints

Perception is not direct

but a search for plausible hypotheses

 Data-driven (bottom-up)...

input
mixture

Source
groups

signal discrete
Front end features Objec;t objects Grouping
formation rules

objects irresistibly appear

vs. Prediction-driven (top-down)

input
mixture

' hypotheses

! Noise
Hypothesis V!
management [N\

components |}

Periodic
~ .| |components]|
prediction
‘ errors '+ -
. signal predicted
eatures features

Front end Compare
& reconcile

match observations
with parameters of a world-model

need world-model constraints...
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Prediction-Driven CASA
(Ellis 1996)

« Explain acomplex sound with basic elements
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Approaches to sound mixture recognition

« Recognize combined signal
- ‘multicondition training’
- combinatorics..

 Separate signals
- e.g. CASA, ICA
- nice, if you can do it

 Segregate features into fragments
- then missing-data recognition
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Aside: Evaluation

« Evaluation is a big problem for CASA
- what is the goal, really?
- what is a good test domain?
- how do you measure performance?

« SNR improvement

- not easy given only before-after signals:
correspondence problem

- can do with fixed filtering mask;
rewards removing signal as well as noise

« ASR improvement
- recognizers typically very sensitive to artefacts

 ‘Real task?
- mixture corpus with specific sound events...
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2) The information in speech

(Patricia Scanlon)

e Mutual Information
identifies where the

information is in time/

frequency:

- little temporal
structure averaged PR
over all sounds | info

- Better with just vowels:

Phoneme
info

B 10 156 20 25 30 35 40 45
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The best subword units?

(Eric Fosler)

« Speech recognizers typically use phonemes
- inherited from linguistics

« Alternative approach is ‘articulatory features’
- orthogonal attributes defining subwords

« Can we infer a feature set from the data
- using e.g. Independent Component Analysis
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The Meeting Recorder Project
(CompSci, ICSI, UW, IDIAP, SRI, IBM)

 Microphones in conventional meetings
- for summarization/retrieval/behavior analysis
- informal, overlapped speech

« Data collection (ICSI, UW, IDIAP)

- 100 hours collected, ongoing transcription

« NSF ‘Mapping Meetings’ project
- also interest from NIST, DARPA, EU

~LaD,
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Speaker Turn detection
(Huan Wei Hee, Jerry Liu)

« Acoustic:
Triangulate tabletop mic timing differences

- use normalized peak value for confidence
rqr-2000-11-02-1440: PZM xcorr lags

Example cross coupling response, chan3 to chanO
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« Behavioral: Look for patterns of speaker turns

mr04: Hand-marked speaker turns vs. time + auto/manual boundaries
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Speech Fragment recognition
(Barker & Cooke/Sheffield)

« Standard classification chooses between

models M to match source features X
P(M)
M:* = argmax P(M|X) = argmax P(X|M) -
PX)

« Mixtures — observed features Y, segregation S
all related by P(X]Y, S)

A

Observation
Y(f)

Source
X(f)

frea
- spectral features allow clean relationship

« Joint classification of model and segregation:
_ P(X]Y, S)
P(M, §Y) = P(M)fP(X|I\/I) P(X) dX P(S|\L()b
a

Sound, mixtures, learning - Dan Ellis 2003-03-20 - 20/33

Laboratory for the Recognition and



Multi-source decoding

e Search for more than one source

0-0-0-0-0-0-0-0-0- Ux(t)

Y() (1)

r
. 8

S1(1)
0-0-0-0-0-0-0-0-0- qi(t)

 Mutually-dependent data masks

« Use e.g. CASA features to propose masks
- locally coherent regions

 Theoretical vs. practical limits
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0 Auditory Scene Analysis
9 Speech Recognition & Mixtures

6 Music Analysis & Similarity
- musical structure analysis
- similarity browsing

9 General Sound Organization

6 Future Work

Lab

Sound, mixtures, learning - Dan Ellis 2003-03-20 - 22/33 R O s A

Laboratory for the Recognition and




Music Structure Analysis
(Alex Sheh)

e Fine-level information from music
- for searching
- for modeling/statistics

« e.g.Chord sequences via PCPs :
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freq / kHz

freq / kHz

Ground truth for Music Recordings
(Rob Turetsky)

« Machine Learning algorithms need labels
- but real recordings don’t have labels

 MIDI ‘replicas’ exist

« Alignment locates MIDI notes in real sound:
"Don't you want me'

19 20 21 22 23 24 25 26 27 28 time / sec
LUD
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Music Similarity Browsing
(Adam Berenzweig)

« ‘Anchor models’ : music on subjective axes
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e Auditory Scene Analysis
9 Speech Recognition & Mixtures
9 Music Analysis & Similarity

@ General Sound Organization
- alarm detection
- sound texture modeling
- recognition of multiple sources

e Future Work
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Q Alarm sound detection

« Alarm sounds have particular structure
- people ‘know them when they hear them’

e |solate alarms in sound mixtures
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- sinusoid peaks have invariant properties
Speech + alarm
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’g T T T T T T T T
0 i ‘2 é 4‘1 é 1‘3 ‘7 - é 9 time/sec
- cepstral coefficients are easy to model
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Sound Texture Modeling
(Marios Athineos)

e Best sound models are based on sinusoids
- noise residual modeled quite simply

 Noise ‘textures’ have extra temporal structure
- need a more detailed model

e Linear prediction of spectrum defines a
parametric temporal envelope:

mpgrl-sx419: TDLPC env (60 poles / 300 ms)

01

0.05

-0.05 ' :
0.65 0.7 0.75 0.8 0.85 0.9

 High-quality noise-excited resynthesis:
- original - resynth - x2TSM - c/w PVOC
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Sound mixture decomposition
(Manuel Reyes)

 Full or approximate Bayesian inference to

model multiple, independent sound sources:

Generation Channel
model parameters

Source Source Received
models signals signals
Model

dependence :2| Observations

Analysis
structure
Observations _ _
O ».| Fragment > Mask { K'.} Model { M. i
formation allocation fitting
L Likelihood J
p(X|M;,Kj) | evaluation
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6 Future Work
- audio-visual information
- real-world sound indexing
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Future work:

Automatic audio-video analysis
(Shih-Fu Chang, Kathy McKeown)

Documentary archive management
- huge ratio of raw-to-finished material
- costly manual logging

Problem: term <« signal mapping
- training corpus of past annotations
- Interactive semi-automatic learning

°
°
annotations text
processing
AV
A/V data | segmentation
and
feature
extraction

terms concept
discovery —>
Multimedia
AN Fusion:
features | A/V feature ’
unsupervised > Mining
clustering Concepts &
Relationships
generic
detectors »

MM Concept Network

Complex .
Spatio- Questlpn
Temporal Answering
Classification
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The ‘Listening Machine’

« Smart PDA records everything

 Only useful if we have index, summaries
- monitor for particular sounds
- real-time description

e Scenarios /$

U

\

Oy
A

- personal listener — summary of your day
- future prosthetic hearing device
- autonomous robots

 Meeting data, ambulatory audio
Lab

Sound, mixtures, learning - Dan Ellis 2003-03-20 - 32/33

Laboratory for the Recognition and



LabROSA Summary

 Broadcast
 Movies
e |ectures

DOMAINS

* Meetings

» Personal recordings
« Location monitoring

ROSA

» Speech recognition
« Speech characterization
« Nonspeech recognition

» Object-based structure discovery & learning

e Scene analysis

« Audio-visual integration

e Music analysis

Understanding
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