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About ICSI
http://www.icsi.berkeley.edu/

• Founded 1988 as ‘portal’ between U.S. and 
European academic systems
- attached to UC Berkeley (but independen
- about 100 people at any time

• Infrastructure funding from European 
government/industry
- .. in return for hosting visitors
- Germany, Italy, Spain, Switzerland, Nethe

• Research groups consist of staff, visitors an
UC Berkeley graduate students

• Original vision:  ‘massively parallel systems
- has diversified since then

1
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• “Realization” (Real Speech Collective?)
- Nelson Morgan, Steve Greenberg, Dan E
- Speech recognition for realistic conditions
- Systems support for ASR applications

• ACIRI 
(AT&T Center for Internet Research at ICSI)
- Network routing, traffic, security

• Theory
- mathematical complexity, coding theory

• Applications
- natural langauge understanding
- connectionist models of cognition

• Networks
- multimedia communications applications
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• Connectionist framework for ASR
(Morgan & Bourlard)

• RASTA front-end processing
(Hermansky & Morgan)

• The Ring Array Processor (RAP)

• SPERT/T0
- SBUS boards with custom 8-way vector µ
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About ICSI 

Hybrid connectionist-HMM speech recogniti
- visualizing speech recognition
- building a recognizer
- some issues in ASR

Overview of current projects

Some details

Conclusions
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The Hybrid Connectionist-HMM system

• Conventional ASR: Symbols S, observatio

• P(Xi|Si) is acoustic likelihood  model e.g. G

• Connectionist replaces with posterior , P(

2
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Visualizing speech recognition
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• Speech as a sequence of discrete symbols 

Front end

Sound

Phone
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Building a recognizer
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• Define pronunciation models
- application vocabulary
- standard dictionaries + phonetic rules?

• Build language model
- P(Wi|Wi-1,...)

- count n-grams in example texts?

• Train acoustic model
- choose features to suit conditions
- train neural net on large labeled corpus
- relabel & retrain?



  

How much training data?
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• The bulk of recent improvements derives fro
larger training sets

• Largest model: 2.5M parameters, 32M patte

= 24 days to train on TetraSPERT, 1015 ops
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Some issues in ASR
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• ‘Spectrogram reading’ paradigm
- short-time features, concatenative models

• Goal: classifier accuracy /
           Word Error Rate (WER)
- objective measures, but quite opaque
- normalization vs. generalization

• HMM requires search over all word sequenc
- dominates processing time in large-vocab

• Best solutions (e.g. features) depends on ta
- RASTA plus delta-features good for small
- plain normalized PLP best for Broadcast 
- modulation spectrum features best for co

• Key challenge = Robustness
- to: task, acoustic conditions, speaking rat

style, accent ...
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About ICSI 

Hybrid connectionist-HMM speech recogniti

Overview of current projects
- Front-end features
- Pronunciation and language modeling
- Modeling alternatives
- Other topics

Some details

Conclusions
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The modulation-filtered spectrogram
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(Brian Kingsbury)

• Goal: invariance to variable acoustics

- filter out irrelevant 
modulations

- channel adaptation 
(on-line auto. gain 
control)

- multiple 
representations

•    Comparison:
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Data-driven feature design

r coeffs
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(Mike Shire)

• ‘Optimal’ features for different conditions
- subband envelope domain
- linear-discriminant analysis (LDA) for filte
- separation of labeled classes is optimized

• Modulation-frequency domain responses
for clean, reverb, mixture:
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Automatic pronunciation extraction
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(Eric Fosler)

• Canonical pronunciations are too limited

• Phonetic rules overproduce ( → homonym

• Filter candidates against acoustics:

• Decision trees for canonical →real mappin

FSG building

ax d aw

Phone trees Letter-to-

d o w

phone trees
Dictionary

jones=jh...
dow=d aw
the=dh ax

Acoustics

...

FSG

d

aw

aa

dh
ddclax

iy

Alignment
dh dh dh dh ax ax dcl d...

Acoustic confidences
dh=0.24  ax=0.4  dcl=0.81...

FSG decoder

Word strings
ororThe Dow Jones



Topic modeling (Latent Semantic Analysis)
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(Dan Gildea & Thomas Hofmann)

• Bayesian model:
- p(word | doc) = ∑t p(word | topic) p(topic |

- EM modeling of p(word | topic) & p(topic |
over training set

- p(topic | doc) estimated from context in 
recognition

• Use to modify language model weights
- p(word) ∝  ptri(word) ptop(word) / puni(word

- Trigram language model 
perplexity of 109 reduced 17%

• Use for topic segmentation?



Multiband systems
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(Adam Janin / Nikki Mirghafori)

• Separate recognizers look at different band
- Fletcher/Allen model of human speech re
- noise/corruption in one channel is limited
- how to combine results?

• Weighted average of all possible combos
- p(S | a,b,c,d) = ∑B p(S | B,a,b,c,d) . p(B)

B ranges over 16 possible band combinat
- p(B) from? constant, local feature (entrop
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Buried Markov Models
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(Jeff Bilmes)

• Increasing the scope of the classifier input

• Add state-dependent sparse links:

• How to add links?
- maximum conditional mutual information
- greedy algorithm

• How to model?
- linear dependence as first attempt

Qt qt= Qt 1+ qt 1+=Qt 1— qt 1—=

X

Qt 2+ qt 2+=

Y



Connectionist speaker recognition
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(Dominique Genoud)

• Use neural networks to model speakers rath
than phones?

• Specialize a phone classifier for a particular
speaker?

• Do both at once for “Twin-output MLP”:
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Acoustic Segment Classification
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(Gethin Williams)

• Features from posteriors show utterance typ
- average per-frame entropy
- ‘dynamism’ - mean squared 1st-order diff
- average energy of ‘silence’ label
- covariance matrix distance to clean speec

• 1.3% error on 2.5 second speech-music tes

• Use for finding segment boundaries?
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Perceptual experiments
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(Steven Greenberg et al.)

• Use spectrally-sparse speech:

• Effect of temporal alignment between bands
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About ICSI 

Hybrid connectionist-HMM speech recogniti

Overview of current projects

Some details:
- Information stream combination
- Broadcast News spoken-document retriev
- SpeechCorder PDA

Conclusions
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.1 Information stream combinations
• Task: AURORA noisy digits

- continuous digits
- test: 4 noise types x 7 SNR levels
- train: mixed clean/noisy data

• Feature design evaluation
- intermediate representation for mobile ph
- evaluation specifies GMM-HMM (HTK) sy

• Baseline results:

• Can we combine features advantageously?

Feature System WER ratio

mfcc HTK 100.0%

plp Hybrid 89.6%

msg Hybrid 87.1%

msg HTK 205.0%

msg KG HTK 184.5%

4



Combination schemes
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• Simple probability combination works best:
P(qi|X1,X2) = P(qi|X1)·P(qi|X2) / P(qi)   ... if X
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Posterior multiplication
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Features System WER ratio

plp + msg Feature combo 74.1%

plp + msg Prob. combo 63.0%

plp + msg HTK on probs. 51.6%
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.2 Spoken document retrieval

• Based on DARPA/NIST Broadcast News

• Training material recorded off-air
- ABC, CNN, CSPAN, NPR
- 200 hour training set (TREC: 550 hour ar
- training: 

word transcriptions + speaker time bound

• Best WER results:
- 1996: HTK: 27%
- 1997: HTK: 16% (but: easier; 22% on 199
- 1998: LIMSI: 14%  (SPRACH: 21%)

• Some clear conclusions
- one classifier for all conditions (or male/fe
- feature adaptation (VTLN, MLLR, SAT)
- importance of segmentation
- more data is useful

4
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• Live transcription
- subtitles
- transcripts
- but: more than words?

• Video editing
- precision word-time alignments
- commercial systems by IBM, Virage, etc.

• Information Retrieval (IR)
- TREC/MUC ‘spoken documents’
- tolerant of word error rate, e.g.:

F0: THE VERY EARLY RETURNS OF THE NICARAGUAN PRESIDENTIAL ELE
SEEMED TO FADE BEFORE THE LOCAL MAYOR ON A LOT OF LAW

F4: AT THIS STAGE OF THE ACCOUNTING FOR SEVENTY SCOTCH ONE LEA
DANIEL ORTEGA IS IN SECOND PLACE THERE WERE TWENTY THREE 
PRESIDENTIAL CANDIDATES OF THE ELECTION

F5: THE LABOR MIGHT DO WELL TO REMEMBER THE LOST A MAJOR EPIS
TRANSATLANTIC CONNECT TO A CORPORATION IN BOTH CONSERVATI
OFFICIALS FROM BRITAIN GOING TO WASHINGTON THEY WENT TO WO
GEORGE BUSH ON HOW TO WIN A SECOND TO NONE IN LONDON THIS
STEPHEN BEARD FOR MARKETPLACE



Thematic Indexing of Spoken Language

Query
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(Thisl)

• EC collaboration, BBC providing data

• 1000+ hr archive data

• IR is key factor
- stop lists
- weighting schemes
- query expansion

Control

Text
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Video
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Segmentation
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• Tcl/Tk front-end to Thisl IR engine

• Spoken query input: SPRACHdemo/Abbo

• NLP integration: prolog lattice parser
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.3 SpeechCorder

• Convergence of interesting problems:
- ubiquitous PDAs
- multimedia processing
- very fast, low-power CPU design
- resource-bound speech recognition

• ICSI / UC Berkeley / MIT collaboration
- ICSI: speech & audio processing
- UCB: user interface design
- MIT: new low-power CPUs

• Current proposal
- PDA
- meeting / memo recorder
- .. also for sociological study?

(new Human Centered Computing conso

4



The SpeechCorder GUI
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• Live annotation of recognized speech

• Application issues:
- correcting errorful transcriptions
- finding places in the recording
- annotations (speaker, notes, emphasis)



SpeechCorder: Audio
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• Speech recognition
- not close-mic’d
- speaker ID
- low-power / low-memory / vectorized
- non-local processing for ‘best’ transcript?

• Other audio issues
- identifying speech versus nonspeech
- finding / indexing nonspeech events...
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About ICSI 

Hybrid connectionist-HMM speech recogniti

Overview of current projects

Some details

Conclusions
- more criticisms of ASR
- future work
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Conclusions

• The downside of objective evaluation
- research priority has been pragmatic goa

reduce WER
- human speech recog. uses many constra
- grammatic/semantic constraints implicit in

sequence statistics (grammar)
- automatic analysis of large corpora is pos

helpful

• The problems with a grammar
- unexpected (unseen) phrases are discou
- highly brittle alternatives
- masks underlying performance

• A more scientific approach
- first work on the underlying phoneme clas
- follow nonsense syllable performance (Fle

5



The signal model in speech recognition
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• Systems & approach have been optimized f
speech-alone situation
- minimize classifier parameters, maximize

‘feature space’
- e.g. cepstra  [example]

• Possibly non-lexical data thrown away
- pitch
- timing/rhythm
- speaker identification

• Dire consequences
- .. dealing with nonspeech sounds
- .. distinguishing success & failure

• Popular focus of research
- e.g. segmental models, pitch features
- fail to obtain robust improvements



Future work
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• Continue improving robustness
- better features
- better pronunciations
- better modeling

• Still looking for a good architecture
- multiband
- multistream
- more adaptation
- more contextual dependence

• Speech recognition: useful for applications
- archive indexing, summarizing
- personal devices, new interfaces
- tie-in to general audio analysis...
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