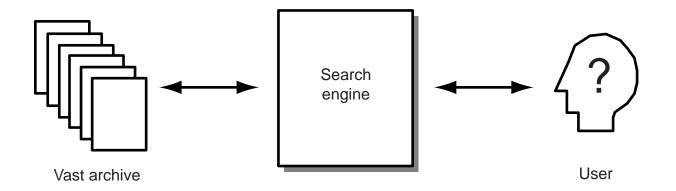
Content-based analysis and indexing for speech, sound & multimedia

Dan Ellis
International Computer Science Institute, Berkeley CA
<dpwe@icsi.berkeley.edu>

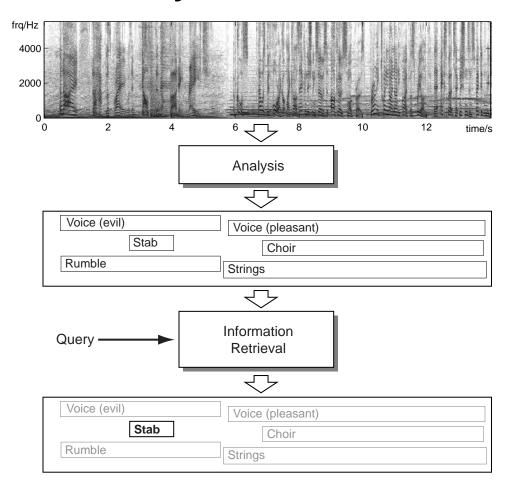

- 1 About content-based indexing
- 2 Related work
- 3 An overview of the project
- 4 Some specific pieces
- **5** Future plans

About content-based indexing

Problem: Automating search in large archives

- "Information retrieval" (IR)
- E.g.:
 - searching the web
 - searching broadcast archives
 - automatic monitoring...

Varieties of Information Retrieval (IR)


Many different search situations:

Archive	Queries	Technology
Text	terms	Text IR (tf • idf, "term space")
Speech	terms	ASR + Text IR
Multimedia	terms	Text IR on annotations
Images, video	examples/ sketches	Global image similarity metrics
Sound	examples/ categories	Global sound similarity metrics
Sound mixtures	examples	object-based similarity
	terms	term-to-feature mapping

- plus combinations (e.g. sound mixtures + video)

Content analysis of sound mixtures

- Use local features to find individual objects
- Objects must mirror subjective experience

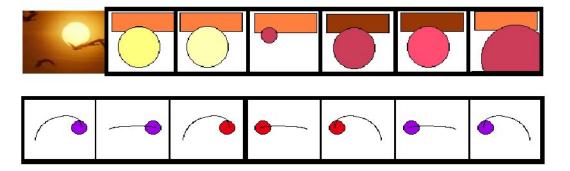
- 1 About content-based retrieval
- 2 Related work
 - Text-based IR
 - Spoken document retrieval
 - Image and video retrieval
 - Multimedia systems
 - Sound effects indexing
 - MPEG7 'metadata'
- 3 An overview of the project
- 4 Some specific pieces
- 5 Future plans

Text-based IR

- e.g. Web search engines
- Metric: term frequency inverse document frequency
 - emphasizes unusual words
 - distances in Euclidean 'term space'
- Decomposition of documents into searchable atoms is (almost) trivial
 - words are easily isolated, close to ideal terms
 - some problems, hence stemming

Spoken document retrieval

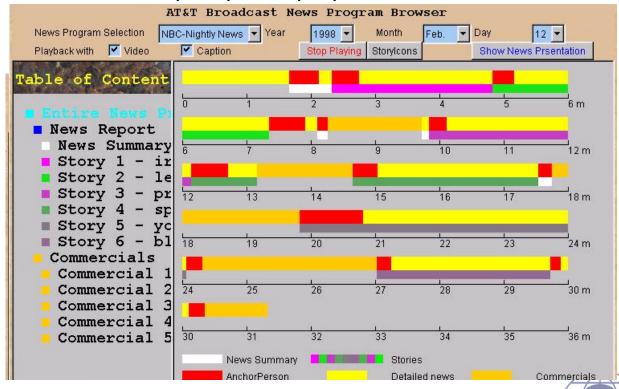
- Information retrieval for speech recordings:
 Convert to text with speech recognition
 - e.g. Thisl project (news broadcasts)



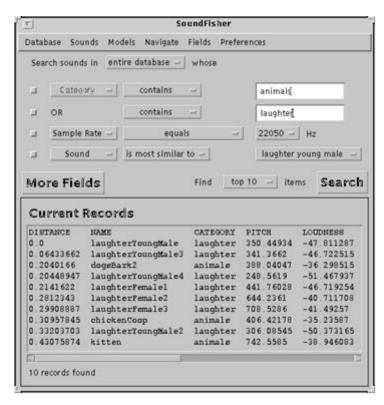
- Speech recognition errors not the limiting factor
 - TREC-98 results: average precision 0.5→0.4
- Output should be original audio
 - best not to show the recognizer output!

Image and video retrieval

- e.g. Query By Image Content (QBIC) (IBM 1995)
 - templates, color, texture
- VideoQ (Columbia 1999)
 - sketching for images and video
 - color, shape, size, position, motion



- Image 'objects'?
 - analog of terms in text
 - acquired by unsupervised clustering
 - object frequency inverse image frequency?


Multimedia systems

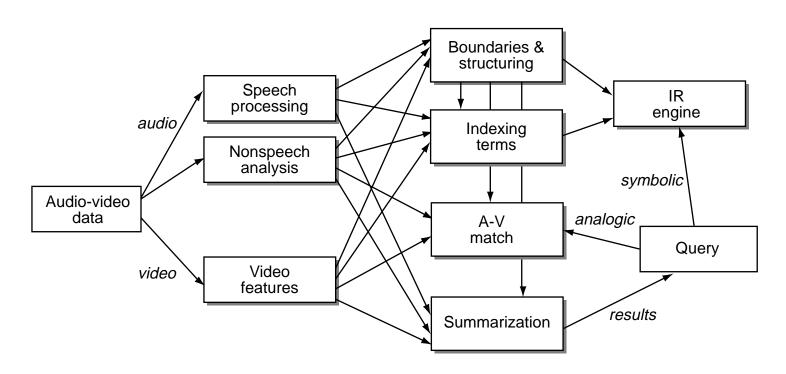
- Informedia (CMU, 1996-)
 - ASR + video cuts + OCR of screen + IR
- AT&T multilevel structuring
 - exploit knowledge of genre (TV news shows)
 - multiple special-purpose information sources

Sound effects indexing

- Muscle Fish "SoundFisher"
 - browser for sound-effects archives
 - define multiple 'perceptual' feature dimensions
 - no attempt to separate objects in mixtures

MPEG-7 'Metadata'

- MPEG is known for audio/video compression standards; also developing standards for use in search and indexing
- MPEG-7 will be a standard format for metadata:
 Well-defined categories for content description
- Mostly just framework, some actual categories
- How to derive descriptors from content is not specified



- 1 About content-based retrieval
- 2 Related work
- 3 An overview of the project
 - Boundaries & structuring
 - Query forms
 - Summarization
 - Evaluation
- 4 Some specific pieces
- 5 Future plans

3

Audio-video content-based retrieval: System overview

- Fusion of audio + video (+...?) information
- Different query forms

Boundaries and structuring

- Multimedia documents lack structure
- Changes relatively easy to detect
 - if we don't have to *characterize* the change
- Audio and video are complementary
- Boundaries define structure e.g. stories
- May be able to identify genre based on structure pattern (TV, news, interviews, sports)
 - notice *repetition* of particular segments (title sequences, commercials etc.)

Forms of query

Traditional term-based

- mapping of terms to audio/video features?
- ... plus all the usual lexical ambiguities
- literal vs. thematic terms

Similarity e.g. by example

- easy once you have initial hits/documents
- but: which aspects of the example?

User-provided example e.g. a 'sketch'

- better idea of which parts of a sketch are salient and which to ignore
- audio sketches?
- spoken words?

Summarization of results

Multimedia 'hits' are hard to present

- multi-media → many aspects
- some are intrinsically temporal

Video presentation

- salient stills/story board
- sped-up video

Spoken content

- textual summarization based on salience & recognizer confidence
- audio selection based on prosodic cues

Audio content

- choosing 'distinctive' events
- visual representation?
- timescale modification?

Evaluation

Multimedia IR is an emerging field

- no consensus on what the task really is
- no common evaluation metrics

Evaluation is critical

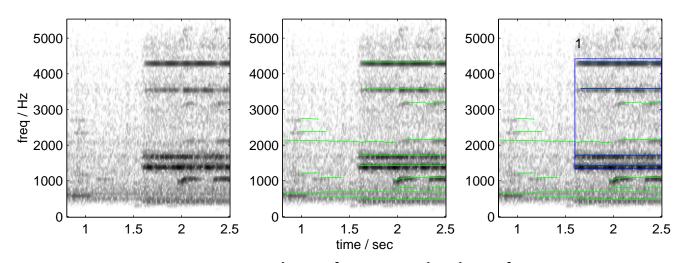
- sanity check on progress
- affords 'fundability'

How to do it?

- quantitative tests e.g. datasets and queries
- qualitative user evaluation

Prototype demos

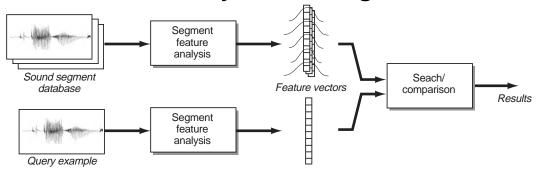
- de rigueur...
- also provide input to design:
 what kind of queries will people really ask?



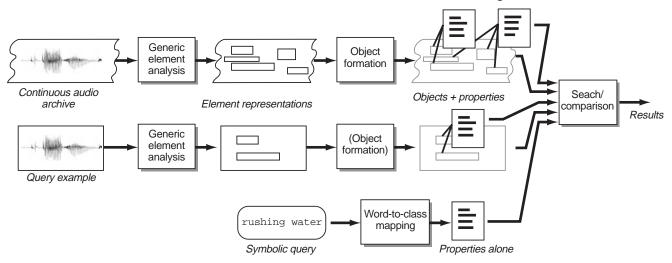
- 1 About content-based retrieval
- 2 Related work
- 3 An overview of the project
- 4 Some specific pieces
 - Object-based audio analysis
 - Speech recognition for retrieval
 - Music processing
 - Machine learning of terms
- 5 Future plans

Object-based audio analysis: Computational Auditory Scene Analysis

Deconstructing sound mixtures



- representation of energy in time-frequency
- formation of atomic elements
- grouping by common properties (onset &c.)
- Ambiguous/noisy sounds need more...
 - top-down constraints
 - multiple alternative hypotheses



Retrieval of sound objects

Muscle Fish system uses global features:

Mixtures → need elements & objects:

- features are calculated over grouped subsets

Speech recognition for retrieval

- Words are not enough;
 Confidence-tagged alternate word hypotheses
- Other useful information:
 - speaker change detection
 - speaker characterization
 - phrasing & timing
 - prosodic features
- Integration with other analyses
 - segmentation for adaptation
 - nonspeech events to ignore
 - video-derived information?

Music processing

- Music is a highly-structured special case
- Need to detect it at the least
- Algorithms to extract special information
 - melody, harmony, rhythm
 - instrument identification
 - genre classification
- Body of existing research...

Machine learning of patterns & terms

- What can you do with a large unlabeled training set (e.g. multimedia clips from the web)?
 - bootstrap learning: look for common patterns
 - have to learn generalizations in parallel:
 e.g. self-organizing maps, EM HMMs
 - post-filtering by humans may find 'meaning' in clusters
- Associated text annotations provide a very small amount of labeling
 - .. but for a very large number of examples– sufficient to obtain purchase?
 - maximize label utility through NLP-type operations (expansion, disambiguation etc.)
 - goal is automatic term-to-feature mapping for term-based content queries

- 1 About content-based retrieval
- 2 Background technologies
- 3 An overview of the project
- 4 Some specific pieces
- 5 Future plans

Future plans

Obtain funding:

- Thisl follow-on with the EU?
- NSF: sound IR, also audio-video (with Zakhor)
- other sources?

Choose a task and an archive

- multimedia clips on the web
- existing archives e.g. taped UCB lectures
- speech/broadcast archives
- meeting recorder

Begin developing features

- computational auditory scene analysis
- .. need to apply to large corpora

Online demo ASAP?

to help clarify the problem

