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LabROSA

• Getting information from sound
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1.  Music Audio Analysis

• Trained classifiers for low-level information	


• notes, chords, beats, section boundaries	



• E.g. Polyphonic transcription	


!
!
!
!
!
!

• feature agnostic	


• needs training data
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Million Song Dataset

• Industrial-scale database for  
music information research	



• Many facets:	


• Echo Nest audio features  

+ metadata	


• Echo Nest “taste profile” 

user-song-listen count	


• Second Hand Song covers	


• musiXmatch lyric BoW	


• last.fm tags	



• Now with audio?	


• resolving artist / album / track / duration  

against what.cd
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Bertin-Mahieux	
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MIDI-to-MSD

• Aligned MIDI to Audio is a nice transcription	


!
!
!
!
!
!
!
!
!

• Can we find matches in large databases?
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Singing ASR

• Speech recognition adapted to singing	


• needs aligned data	



• Extensive work to line up scraped 
“acapellas” and  
full mix	


• including jumps!

6

McVicar
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Block Structure RPCA

• RPCA separates vocals and background 
based on low rank optimization	


• single trade-off parameter	


• adjust based on higher-level musical features?

7

Papadopoulos

Table 1. Sound excerpts used for the evaluation and proportion of purely-instrumental segments (P.I.) (in% of the whole excerpt duration).
Name % (P.I.) Name % (P.I.) Name % (P.I.)
1- Beatles Sgt Pepper’s Lonely Hearts Club Band 49.3 5,6 - Puccini piece for soprano and piano 24.7 10 - Marvin Gaye Heard itThrough The Grapevine 30.2
2 - BeatlesWith A Little Help From My Friends 13.5 7 - Pink Noise Party Their Shallow Singularity 42.1
3 - Beatles She’s Leaving Home 24.6 8 - Bob Marley Is This Love 37.2 11 - The Eagles Take it Easy 35.5
4 - Beatles A Day in The Life 35.6 9 - Doobie Brothers Long Train Running 65.6 12 - The PoliceMessage in aBottle 24.9

mixture is computed using a window length of 1024 samples with
75% overlap at a sampling rate of 11.5KHz. No post-processing
(such as masking) is added.
4.2. Results and Discussion

Fig. 2. Separation performance of the leading singing voice with the base-
line method, for various values of λ, for the song Their Shallow Singularity.

Fig. 3. Separation performance for the background (left) and the singing
voice (right) via, from top to bottom, the SDR, SIR, SAR and NSDR mea-
sures for each song. Constant λ = 1 (∗), adaptive λ = (1, 5) with prior
ground truth (•) and estimated (◦) voice activity location.

• Global separation results. As illustrated by Fig. 2, the qual-
ity of the separation with the baseline method [18] depends on the
value of the regularization parameter. Moreover, the value that leads
to the best separation quality differs from one music excerpt to an-
other. Thus, when processing automatically a collection of music
tracks, the choice of this value results from a trade-off. We report
here results obtained with the typical choice λv = 1. In A-RPCA,
this regularization parameter is further adapted to the music content
based on prior music information. In all experiments, for a given
constant value λv in the baseline method, setting λnv > λv in Eq.
(7) improves the results6. Results of the separation obtained with
various configurations of the proposed model are described in Fig.
3. Using a musically-informed adaptive regularization parameter al-
lows improving the results of the separation both for the background
and the leading voice components. Note that the larger the propor-
tion of purely-instrumental segments in a piece (see Tab. 1), the

6For lack of space, we do not report all of the experiments obtained with
various values of λ.

larger the results improvement (see in particular pieces 1, 7, 8 and 9
in Fig. 2), which is consistent with the goal of the proposed method.

There is however one drawback: improved SDR (better over-
all separation performance) and SIR (better capability of removing
music interferences from the singing voice) with A-RPCA are ob-
tained at the price of introducing more artifacts in the estimated voice
(lower SARvoice). Listening tests reveal that in some segments pro-
cessed by A-RPCA, as for instance segment [1 − 1.15]m in Fig.
4, one can hear some high frequency isolated coefficients superim-
posed to the separated voice. This drawback could be reduced by
including harmonicity priors in the sparse component of RPCA, as
proposed in [20].

• Ground truth versus estimated voice activity location. Im-
perfect voice activity location information still allows an improve-
ment, although to a lesser extent than with ground-truth voice ac-
tivity information. The decrease in the results mainly comes from
background segments classified as vocal segments.

Fig. 4. Separated voice for various values of λ for the Pink Noise Party song
Their Shallow Singularity. From top to bottom: clean voice, constant λ = 1,
constant λ = 5, adaptive λ = (1, 5).

• Local separation results. It is interesting to note that using an
adaptive regularization parameter in a unified analysis of the whole
piece is different from separately analyzing vocal and purely instru-
mental segments with different but constant values of λ. This is
illustrated in the dashed rectangles areas of Fig. 4. Moreover, local
results7 with the unified analysis, show not only that the sparse com-
ponents (singing voice) are limited in purely-instrumental segments,
but also that the energy of music background is better weakened in
the resynthesized voice in vocal segments (better local SIRvoice).

5. CONCLUSION
We have explored an adaptive version of the RPCA technique that
allows the processing of entire pieces of music including local vari-
ations in the music content. Music content information is incorpo-
rated in the decomposition to guide the selection of coefficients in
the sparse and low-rank layers according to the semantic structure
of the piece. We have focused on a simple criterion (voice activity
information), but the method could be extended with other criteria
(singer identification, vibrato saliency. etc.). The method could be
improved by incorporating additional information to set differently
the regularization parameters for each track to better accommodate
the varying contrast of foreground and background. The idea of an
adaptive decomposition could also be improved with a more com-
plex formulation of RPCA that incorporates additional constraints
[20] or a learned dictionary [46].

7For space constraint, local BSS-eval results are not reported.
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• Low-rank decomposition of skewed  
self-similarity to identify repeats	



• Learned weighting of multiple factors  
to segment	


!

• Linear  
Discriminant  
Analysis  
between  
adjacent  
segments

Ordinal LDA Segmentation

8

McFee
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2.  Environmental Sound

• Extracting useful information from 
soundtracks	



• e.g. TRECVID Multimedia Event Detection 
(MED)	


• “Making a Sandwich”, “Getting a Vehicle Unstuck”	


• 100 examples, find matches in 100k videos	


• manual annotations for ~10 h

9

E009 Getting a Vehicle Unstuck
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Foreground Event Recognition

• Transients = 
foreground events?	



• Onset detector 
finds energy bursts	


• best SNR	



• PCA basis to 
represent each	


• 300 ms x auditory 

freq	


• “bag of transients”

10
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NMF Transient Features	



• Decompose spectrograms into 
templates + activation	


!
!
!
!
!

• well-behaved  
gradient descent	



• 2D patches	


• sparsity control	


• computation  

time…

11

Smaragdis & Brown ’03	


Abdallah & Plumbley ’04	



Virtanen ’07	


Cotton & Ellis’ 11	
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Background Retrieval

• Classify soundtracks by statistics of ambience	


• E.g. Texture features	



!
!
!
!
!
• Subband 

distributions	


• Envelope  

cross-corrs
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Auditory Model Features

• Subband Autocorrelation PCA	


• Simplified version of autocorrelogram	


• 10x faster than Lyon original	



• Capture fine time structure in multiple bands	


• information lost in MFCCs

13

Lyon et al. 2010	


Lee & Ellis 2012	



Cotton & Ellis 2013
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Subband Autocorrelation

• Autocorrelation stabilizes 
fine time structure
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• 25 ms window, 
lags up to 25 ms	



• calculated every 
10 ms	



• normalized to max 
(zero lag)
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Retrieval Examples

• High precision for in-domain top hits

15
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3.  Speech Enhancement

• Noisy speech scenarios	


• Ambient recording (background noise)	


• Communication channel (processing distortion)

16
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RPCA Enhancement

• Decompose spectrogram  
into sparse + low-rank 	



• Sparse activation H of  
dictionary W	


!
!
!
!

• ASR benefits:

17

min
H,L,S

�HkHk1 + �LkLk⇤ + �SkSk1

+ I+(H)

s.t. Y = WH + L+ S

C S D I 
Orig 6.8 10.6 82.6 0.7 

RPCA 10.8 36.5 52.7 0.5 

wie+RPCA 10.4 40.1 49.5 2.1 

Chen, McFee & Ellis ’14
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Classification Pitch Tracker

• SAcC: MLP trained on noisy speech  
with ground-truth pitch track targets	


!
!
!
!
!
!

• Large benefits for 
in-domain noisy 
speech

18

Lee & Ellis ’12
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Pitch-Normalized Enhancement

• Use noise-robust pitch tracker for enhancement?

19

• Normalize 
voice pitch	


!

• Fixed-pitch 
enhancement	


!

• Reimpose pitch

Noisy signal

Clean signal
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Summary

• Music	


• transcription, segmentation, …	


• alignment for ground truth	


!

• Soundtracks	


• foreground events, background ambience	


!

• Noisy Speech	


• classification pitch tracking	


• spectrogram enhancement
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