Audio Information Extraction

Dan Ellis <dpwe@ee.columbia.edu>

Laboratory for Recognition and Organization of Speech and Audio (LabROSA)

Electrical Engineering, Columbia University http://labrosa.ee.columbia.edu/

Outline

- Audio Information Extraction
- Speech, music, and other
- General sound organization
- 4 Future work & summary

1

Audio Information Extraction (AIE)

Central operation:

- continuous sound mixture
 - → distinct objects & events

Perceptual impression is very strong

- but hard to 'see' in signal

Perceptual organization: Bregman's lake

"Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?" (after Bregman'90)

Received waveform is a mixture

- two sensors, N signals ...

Disentangling mixtures as primary goal

- perfect solution is not possible
- need knowledge-based constraints

The information in sound

- A sense of hearing is evolutionarily useful
 - gives organisms 'relevant' information
- Auditory perception is ecologically grounded
 - scene analysis is preconscious (→ illusions)
 - special-purpose processing reflects
 'natural scene' properties
 - subjective not canonical (ambiguity)

Positioning AIE

Domain

- text ... speech ... music ... general audio

Operation

recognize ... index/retrieve ... organize

AIE Applications

Multimedia access

- sound as complementary dimension
- need all modalities for complete information

Personal audio

- continuous sound capture quite practical
- different kind of indexing problem

Machine perception

- intelligence requires awareness
- necessary for communication

Music retrieval

- area of hot activity
- specific economic factors

Outline

- 1 Audio Information Extraction
- 2 Speech, music, and other
 - Speech recognition
 - Multi-speaker processing
 - Music classification
 - Other sounds
- 3 General sound organization
- 4 Future work & summary

Automatic Speech Recognition (ASR)

Standard speech recognition structure:

- 'State of the art' word-error rates (WERs):
 - 2% (dictation) 30% (telephone conversations)
- Can use multiple streams...

Tandem speech recognition

(with Hermansky, Sharma & Sivadas/OGI, Singh/CMU, ICSI)

- Neural net estimates phone posteriors; but Gaussian mixtures model finer detail
- Combine them!

- Train net, then train GMM on net output
 - GMM is ignorant of net output 'meaning'

Tandem system results: Aurora 'noisy digits'

(with Manuel Reyes)

- 50% of word errors corrected over baseline
- Beat even 'bells and whistles' system using intensive large-vocabulary techniques

Missing data recognition

(Cooke, Green, Barker... @ Sheffield)

- Energy overlaps in time-freq. hide features
 - some observations are effectively missing
- Use missing feature theory...
 - integrate over missing data dimensions x_m

$$p(x|q) = \int p(x_p|x_m, q) p(x_m|q) dx_m$$

- Effective in speech recognition
 - trick is finding good/bad data mask

Lab ROSA

The Meeting Recorder project

(with ICSI, UW, SRI, IBM)

- Microphones in conventional meetings
 - for summarization/retrieval/behavior analysis
 - informal, overlapped speech
- Data collection (ICSI, UW, ...):

- 100 hours collected, ongoing transcription
- headsets + tabletop + 'PDA'

Crosstalk cancellation

Baseline speaker activity detection is hard:

- Noisy crosstalk model: $m = C \cdot s + n$
- Estimate subband C_{Aa} from A's peak energy
 - ... including pure delay (10 ms frames)
 - ... then linear inversion

Speaker localization

(with Wei Hee Huan)

Tabletop mics form an array;
 time differences locate speakers

- Ambiguity:
 - mic positions not fixed
 - geometric symmetry
- Detect speaker activity, overlap

Music analysis: Structure recovery

(with Rob Turetsky)

 Structure recovery by similarity matrices (after Foote)

- similarity distance measure?
- segmentation & repetition structure
- interpretation at different scales: notes, phrases, movements
- incorporating musical knowledge: 'theme similarity'

Music analysis: Lyrics extraction

(with Adam Berenzweig)

- Vocal content is highly salient, useful for retrieval
- Can we find the singing?
 Use an ASR classifier:

- Frame error rate ~20% for segmentation based on posterior-feature statistics
- Lyric segmentation + transcribed lyrics
 → training data for lyrics ASR...

Artist similarity

• Train network to discriminate specific artists:

w60o40 stats based on LE plp12 2001-12-28

- Focus on vocal segments for consistency
- .. then clustering for recommendation

Alarm sound detection

- Alarm sounds have particular structure
 - people 'know them when they hear them'
- Isolate alarms in sound mixtures

- representation of energy in time-frequency
- formation of atomic elements
- grouping by common properties (onset &c.)
- classify by attributes...
- Key: recognize despite background

Sound textures

(with Marios Athineos)

Textures: Large class of sounds

- no clear pitch, onsets, shape
- fire, rain, paper, machines, ...
- 'bulk' subjective properties

Abstract & synthesize by:

- project into low-dimensional parameter space
- learn dynamics within space
- generate endless versions

Outline

- 1 Audio Information Extraction
- 2 Speech, music, and other
- **3** General sound organization
 - Computational Auditory Scene Analysis
 - Audio Information Retrieval
- 4 Future work & summary

Computational Auditory Scene Analysis (CASA)

- Goal: Automatic sound organization;
 Systems to 'pick out' sounds in a mixture
 - ... like people do
- E.g. voice against a noisy background
 - to improve speech recognition
- Approach:
 - psychoacoustics describes grouping 'rules'
 - ... just implement them?

CASA front-end processing

Correlogram:
 Loosely based on known/possible physiology

- linear filterbank cochlear approximation
- static nonlinearity
- zero-delay slice is like spectrogram
- periodicity from delay-and-multiply detectors

Adding top-down cues

Perception is not *direct* but a *search* for *plausible hypotheses*

Data-driven (bottom-up)...

vs. Prediction-driven (top-down) (PDCASA)

Motivations

- detect non-tonal events (noise & click elements)
- support 'restoration illusions'...
 - → hooks for high-level knowledge
- + 'complete explanation', multiple hypotheses, ...

PDCASA and complex scenes

Lab ROSA

-50-

Audio Information Retrieval

(with Manuel Reyes)

Searching in a database of audio

- speech .. use ASR
- text annotations .. search them
- sound effects library?

e.g. Muscle Fish "SoundFisher" browser

- define multiple 'perceptual' feature dimensions
- search by proximity in (weighted) feature space

 features are 'global' for each soundfile, no attempt to separate mixtures

Audio Retrieval: Results

Musclefish corpus

- most commonly reported set

Features

- mfcc, brightness, bandwidth, pitch ...
- no temporal sequence structure

Results:

- 208 examples, 16 classses, 84% correct
- confusions:

	Instr	Spch	Env	Anim	Mech
Musical instrs.	136 (14)				
Speech		17 (7)			2
Eviron.		2	6 (1)		
Animals	2		2	1 (0)	
Mechanical	1				15 (2)

CASA for audio retrieval

- When audio material contains mixtures, global features are insufficient
- Retrieval based on element/object analysis:

- features are calculated over grouped subsets

Outline

- 1 Audio Information Extraction
- 2 Speech, music, and other
- 3 General sound organization
- 4 Future work & summary

Automatic audio-video analysis

(with Prof. Shih-Fu Chang, Prof. Kathy McKeown)

Documentary archive management

- huge ratio of raw-to-finished material
- costly manual logging
- missed opportunities for cross-fertilization

Problem: term <-> signal mapping

- training corpus of past annotations
- interactive semi-automatic learning
- need object-related features

The 'Machine listener'

- Goal: An auditory system for machines
 - use same environmental information as people
- Signal understanding
 - monitor for particular sounds
 - real-time description

Scenarios

- personal listener → summary of your day
- future prosthetic hearing device
- autonomous robots

LabROSA Summary

- Broadcast
- Movies
- Lectures

- Meetings
- Personal recordings
- Location monitoring

ROSA

- Object-based structure discovery & learning
- Speech recognition
- Nonspeech recognition
- Scene analysis
- Speech characterization Audio-visual integration
 - Music analysis

APPLICATIONS

- Structuring
- Search
- **Summarization**
- Awareness
- Understanding

Summary: Audio Info Extraction

Sound carries information

- useful and detailed
- often tangled in mixtures

Various important general classes

- Speech: activity, recognition
- Music: segmentation, clustering
- Other: detection, description

General processing framework

- Computational Auditory Scene Analysis
- Audio Information Retrieval

Future applications

- Ubiquitous intelligent indexing
- Intelligent monitoring & description

Audio Information Extraction: panacea or punishment?

