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Audio Information Extraction  (AIE)

 

• Central operation:

 

- continuous sound mixture 

 

→

 

 distinct objects & events

 

• Perceptual impression is very strong

 

- but hard to ‘see’ in signal
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Perceptual organization:  Bregman’s lake

 

“Imagine two narrow channels dug up from the edge of a 
lake, with handkerchiefs stretched across each one.  
Looking only at the motion of the handkerchiefs, you are 
to answer questions such as: How many boats are there 
on the lake and where are they?”   

 

(after Bregman’90)

 

• Received waveform is a mixture

 

- two sensors, N signals ...

 

• Disentangling mixtures as primary goal

 

- perfect solution is not possible
- need knowledge-based 

 

constraints
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The information in sound

 

• A sense of hearing is evolutionarily useful

 

- gives organisms ‘relevant’ information

 

• Auditory perception is 

 

ecologically

 

 grounded

 

- scene analysis is preconscious (

 

→

 

 illusions)
- special-purpose processing reflects 

‘natural scene’ properties
- subjective 

 

not

 

 canonical (ambiguity)
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Positioning AIE

 

• Domain

 

- text ... speech ... music ... general audio

 

• Operation

 

- recognize ... index/retrieve ... organize
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AIE Applications

 

• Multimedia access

 

- sound as complementary dimension
- need all modalities for complete information

 

• Personal audio

 

- continuous sound capture quite practical
- different kind of indexing problem

 

• Machine perception

 

- intelligence requires awareness
- necessary for communication

 

• Music retrieval

 

- area of hot activity
- specific economic factors
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Automatic Speech Recognition (ASR)

 

• Standard speech recognition structure:

• ‘State of the art ’ word-error rates (WERs):

 

- 2% (dictation) - 30% (telephone conversations)

 

• Can use multiple streams...
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Tandem speech recognition

 

(with Hermansky, Sharma & Sivadas/OGI, Singh/CMU, ICSI)

 

• Neural net estimates phone posteriors;
but Gaussian mixtures model finer detail

• Combine them!

• Train net, then train GMM on net output

 

- GMM is ignorant of net output ‘meaning’
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Tandem system results: 
Aurora ‘noisy digits ’

 

(with Manuel Reyes)

 

• 50% of word errors corrected over baseline

• Beat even ‘bells and whistles ’ system
using intensive large-vocabulary techniques
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Missing data recognition

 

(Cooke, Green, Barker... @ Sheffield)

 

• Energy overlaps in time-freq. hide features

 

- some observations are effectively missing

 

• Use missing feature theory...

 

- integrate over missing data dimensions 

 

x

 

m

 

• Effective in speech recognition

 

- trick is finding good/bad data mask
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The Meeting Recorder project

 

(with ICSI, UW, SRI, IBM)

 

• Microphones in conventional meetings

 

- for summarization/retrieval/behavior analysis
- informal, overlapped speech

 

• Data collection (ICSI, UW, ...):

 

- 100 hours collected, ongoing transcription
- headsets + tabletop + ‘PDA’
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Crosstalk cancellation

 

• Baseline speaker activity detection is hard:

• Noisy crosstalk model: 

• Estimate subband C

 

Aa

 

 from A ’s peak energy

 

- ... including pure delay (10 ms frames)
- ... then linear inversion
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Speaker localization
(with Wei Hee Huan)

• Tabletop mics form an array;
time differences locate speakers

• Ambiguity:
- mic positions not fixed
- geometric symmetry

• Detect speaker activity, overlap
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Music analysis: Structure recovery
(with Rob Turetsky)

• Structure recovery by similarity matrices
(after Foote)

- similarity distance 
measure?

- segmentation & 
repetition structure

- interpretation at different 
scales:
notes, phrases, 
movements

- incorporating musical 
knowledge:
‘theme similarity’
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Music analysis: Lyrics extraction
(with Adam Berenzweig)

• Vocal content is highly salient, 
useful for retrieval

• Can we find the singing? 
Use an ASR classi fier:

• Frame error rate ~20% for segmentation based 
on posterior-feature statistics

• Lyric segmentation + transcribed lyrics
→ training data for lyrics ASR...
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Artist similarity

• Train network to discriminate speci fic artists:

• Focus on vocal segments for consistency

• .. then clustering for recommendation
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Alarm sound detection

• Alarm sounds have particular structure
- people ‘know them when they hear them’

• Isolate alarms in sound mixtures

- representation of energy in time-frequency
- formation of atomic elements
- grouping by common properties (onset &c.)
- classify by attributes...

• Key: recognize despite background
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Sound textures
(with Marios Athineos)

• Textures: Large class of sounds 
- no clear pitch, onsets, shape
- fire, rain, paper, machines, ...
- ‘bulk’ subjective properties

• Abstract & synthesize by:
- project into low-dimensional parameter space
- learn dynamics within space
- generate endless versions
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Computational Auditory
Scene Analysis (CASA)

• Goal: Automatic sound organization ;
Systems to ‘pick out ’ sounds in a mixture
- ... like people do

• E.g. voice against a noisy background
- to improve speech recognition

• Approach:
- psychoacoustics describes grouping ‘rules’
- ... just implement them?

CASA
Object 1 description
Object 2 description
Object 3 description
...



Lab
ROSA

AIE @ MERL - Dan Ellis 2002-01-07 - 22

CASA front-end processing

• Correlogram:
Loosely based on known/possible physiology

- linear filterbank cochlear approximation
- static nonlinearity
- zero-delay slice is like spectrogram
- periodicity from delay-and-multiply detectors
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Adding top-down cues

Perception is not direct
but a search for plausible hypotheses

• Data-driven (bottom-up)...

vs. Prediction-driven (top-down) (PDCASA)

• Motivations
- detect non-tonal events (noise & click elements)
- support ‘restoration illusions’...

→ hooks for high-level knowledge
+  ‘complete explanation’, multiple hypotheses, ...
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PDCASA and complex scenes
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Audio Information Retrieval
(with Manuel Reyes)

• Searching in a database of audio
- speech .. use ASR
- text annotations .. search them
- sound effects library?

• e.g. Muscle Fish “ SoundFisher” browser
- define multiple ‘perceptual’ feature dimensions
- search by proximity in (weighted) feature space

- features are ‘global’ for each soundfile,
no attempt to separate mixtures 
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Audio Retrieval: Results

• Musclefish corpus
- most commonly reported set

• Features
- mfcc, brightness, bandwidth, pitch ...
- no temporal sequence structure

• Results: 
- 208 examples, 16 classses, 84% correct
- confusions:

Instr Spch Env Anim Mech

Musical instrs. 136 (14)

Speech 17 (7) 2

Eviron. 2 6 (1)

Animals 2 2 1 (0)

Mechanical 1 15 (2)
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CASA for audio retrieval

• When audio material contains mixtures, 
global features are insufficient

• Retrieval based on element/object analysis:

- features are calculated over grouped subsets
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Automatic audio-video analysis
(with Prof. Shih-Fu Chang, Prof. Kathy McKeown)

• Documentary archive management
- huge ratio of raw-to-finished material
- costly manual logging
- missed opportunities for cross-fertilization

• Problem: term <-> signal mapping
- training corpus of past annotations
- interactive semi-automatic learning
- need object-related features
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The ‘Machine listener’

• Goal: An auditory system for machines
- use same environmental information as people

• Signal understanding
- monitor for particular sounds
- real-time description

• Scenarios

- personal listener → summary of your day
- future prosthetic hearing device
- autonomous robots
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LabROSA Summary
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•  Broadcast
•  Movies
•  Lectures

•  Meetings
•  Personal recordings
•  Location monitoring

•  Speech recognition
•  Speech characterization
•  Nonspeech recognition

• Object-based structure discovery & learning

•  Scene analysis
•  Audio-visual integration
•  Music analysis

•  Structuring
•  Search
•  Summarization
•  Awareness
•  Understanding
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Summary: Audio Info Extraction

• Sound carries information
- useful and detailed
- often tangled in mixtures

• Various important general classes
- Speech: activity, recognition
- Music: segmentation, clustering
- Other: detection, description

• General processing framework
- Computational Auditory Scene Analysis
- Audio Information Retrieval

• Future applications
- Ubiquitous intelligent indexing
- Intelligent monitoring & description
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Audio Information Extraction:
panacea or punishment?


