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@ Audio Information Extraction (AIE)
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 Central operation:

- continuous sound mixture
- distinct objects & events

 Perceptual impression is very strong
- but hard to ‘see’ in signal
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Perceptual organization: Bregman'’s lake

“Imagine two narrow channels dug up from the edge of a
lake, with handkerchiefs stretched across each one.
Looking only at the motion of the handkerchiefs, you are
to answer questions such as: How many boats are there
on the lake and where are they?” (after Bregman'90)

e Received waveform is a mixture
- two sensors, N signals ...

 Disentangling mixtures as primary goal
- perfect solution is not possible
- need knowledge-based constraints
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The information in sound

0 1 2 3 4 time/s

« A sense of hearing is evolutionarily useful
- gives organisms ‘relevant’ information

« Auditory perception is ecologically grounded
- scene analysis is preconscious (- illusions)

- special-purpose processing reflects
‘natural scene’ properties

- subjective not canonical (ambiguity)
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- text ... speech ... music ... general audio

o Operation
- recognize ... index/retrieve ... organize
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AlIE Applications

 Multimedia access
- sound as complementary dimension
- need all modalities for complete information

* Personal audio
- continuous sound capture quite practical
- different kind of indexing problem

 Machine perception
- intelligence requires awareness
- necessary for communication

* Music retrieval
- area of hot activity
- specific economic factors
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DATA

Automatic Speech Recognition (ASR)

« Standard speech recognition structure:
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« ‘State of the art * word-error rates (WERS):
- 2% (dictation) - 30% (telephone conversations)

e Can use multiple streams...

seventy|
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Tandem speech recognition
(with Hermansky, Sharma & Sivadas/OGl, Singh/CMU, ICSI)

* Neural net estimates phone posteriors;
but Gaussian mixtures model finer detail

e Combine them!

Hybrid Connectionist-HMM ASR Conventional ASR (HTK)

Feature Neural net Noway Feature Gauss mix HTK
calculation classifier decoder calculation models decoder
Ji OmTm0) Ji é OO
Input Speech Phone Words Input Speech Subword Words
sound features probabilities sound features likelihoods
Tandem modeling
Feature Neural net Gauss mix HTK
calculation classifier models decoder
+ + A * * *
(N Ve 080
OmTm0)
Input Speech Phone Subword Words
sound features probabilities likelihoods

« Train net, then train GMM on net output
- GMM is ignorant of net output ‘meaning’

Lab
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Tandem system results:
Aurora ‘noisy digits '’
(with Manuel Reyes)
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50% of word errors corrected over baseline

Beat even ‘bells and whistles ’ system
using intensive large-vocabulary techniques
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Missing data recognition
(Cooke, Green, Barker... @ Sheffield)

 Energy overlaps in time-freq. hide features
- some observations are effectively missing

e Use missing feature theory...
- integrate over missing data dimensions Xq,

P(X|A) = [P(Xp|Xpy A) P(Xpy|G) X,

» Effective in speech recognition
- trick is finding good/bad data mask
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The Meeting Recorder project
(with ICSI, UW, SR, IBM)

* Microphones in conventional meetings
- for summarization/retrieval/behavior analysis
- informal, overlapped speech

« Data collection (ICSI, UW, ...):

- 100 hours collected, ongoing transcrlptlon
- headsets + tabletop + ‘PDA’
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Crosstalk cancellation

» Baseline speaker activity detection is hard:

backchannel
(signals desire to regain floor?)

floor seizure
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« Noisy crosstalk model: m = C[E+n

« Estimate subband C 5 from A’s peak energy

- ...Including pure delay (10 ms frames)
- ...then linear inversion
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Speaker localization
(with Wei Hee Huan)

« Tabletop mics form an array;
time differences locate speakers

]

 Ambiguity:
- mic positions not fixed
- geometric symmetry

» Detect speaker activity, overlap
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Music analysis: Structure recovery
(with Rob Turetsky)

» Structure recovery by similarity matrices
(after Foote)

- similarity distance
measure?

- segmentation &
repetition structure

- interpretation at different
scales:
notes, phrases,
movements

- Incorporating musical
knowledge:
‘theme similarity’
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Music analysis: Lyrics extraction
(with Adam Berenzweig)

* Vocal content is highly salient,
useful for retrieval

 Can we find the singing?
Use an ASR classi fier:

speech (trnset #58) music (no vocals #1)

1 2 time/sec O 1 2 time / sec 0 1 2 time / sec

 Frame error rate ~20% for segmentation based
on posterior-feature statistics

* Lyric segmentation + transcribed lyrics
- training data for lyrics ASR...
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« Train network to discriminate speci fic artists:
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« Focus on vocal segments for consistency

» ..then clustering for recommendation
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Alarm sound detection

* Alarm sounds have particular structure
- people ‘know them when they hear them’

e |solate alarms in sound mixtures
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- representation of energy in time-frequency
- formation of atomic elements

- grouping by common properties (onset &c.)
- classify by attributes...

« Key: recognize despite background

Lab

AIE @ MERL - Dan Ellis 2002-01-07 - 18




Sound textures
(with Marios Athineos)

» Textures: Large class of sounds
- no clear pitch, onsets, shape
fire, rain, paper, machines, ...
- ‘bulk’ subjective properties

» Abstract & synthesize by:
- project into low-dimensional parameter space
- learn dynamics within space
- generate endless versions
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Computational Auditory
Scene Analysis (CASA)
Object 1 description

ﬂ Q — .| cAsSA Object 2 description

) Object 3 description

» Goal: Automatic sound organization ;
Systems to ‘pick out ' sounds in a mixture

- ... like people do

 E.g. voice against a noisy background
- to improve speech recognition

e Approach:
- psychoacoustics describes grouping ‘rules’
- ... just implement them?
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CASA front-end processing

 Correlogram:
Loosely based on known/possible physiology

short-time
autocorrelation

| Correlogram
slice
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static nonlinearity

zero-delay slice is like spectrogram
periodicity from delay-and-multiply detectors

frequency channels
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Adding top-down cues

Perception is not direct
but a search for plausible hypotheses

« Data-driven (bottom-up)...

input signal discrete
mixture Front end features Object objects Grouping Source
formation rules groups

vs. Prediction-driven (top-down) (PDCASA)

» hypotheses
; Noise I ;
components[\_
Hypothesis ‘ Predict
management Periodi ] & combine
eriodic  |[p
~ 1 |components|l|| !
predlctlon; !
errors , —————————
predicted
features

signal
features
Front end Compare
& reconcile

* Motivations
- detect non-tonal events (noise & click elements)
- support ‘restoration illusions’...
— hooks for high-level knowledge
+ ‘complete explanation’, multiple hypotheses, ...
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PDCASA and complex scenes
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Audio Information Retrieval
(with Manuel Reyes)

« Searching in a database of audio
- speech ..use ASR
- text annotations .. search them
- sound effects library?

 e.g.Muscle Fish “SoundFisher” browser
- define multiple ‘perceptual’ feature dimensions
- search by proximity in (weighted) feature space

o
PR 1 — n Segment N_
L > feature ey N
analysis
|
Sound segment N Seach/
database Feature vectors comparison |
Results
Segment
‘ \‘W“ i " > feature >
analysis
Query example

- features are ‘global’ for each soundfile,
no attempt to separate mixtures

Lab
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Audio Retrieval: Results

 Musclefish corpus
- most commonly reported set

 Features
- mfcc, brightness, bandwidth, pitch ...
- no temporal sequence structure

 Results:
- 208 examples, 16 classses, 84% correct
- confusions:
Instr Spch Env Anim Mech

Musical instrs. || 136 (14)

Speech 17 (7) 2
Eviron. 2 6 (1)
Animals 2 2 1 (0)

Mechanical 1 15 (2)

Lab
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CASA for audio retrieval

* When audio material contains mixtures,
global features are insufficient

 Retrieval based on element/object analysis:

Generic — Obi / 4
i — ject
T element i ] :
g ; analysis Q formation [ 1

Continuous audio
archive Element representations

N !

Objects + properties Seach/

comparison [
Results

Generic j
— Object /
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analysis C—
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Word-to-class
rushing wat er | sep-| e

mapping

Symbolic query Properties alone

- features are calculated over grouped subsets
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Automatic audio-video analysis
(with Prof. Shih-Fu Chang, Prof. Kathy McKeown)

« Documentary archive management
- huge ratio of raw-to-finished material
- costly manual logging
- missed opportunities for cross-fertilization

« Problem: term <-> signal mapping
- training corpus of past annotations
- interactive semi-automatic learning
- need object-related features

MM Concept Network

annotations text terms concept
’ processing discovery [—P @)
T Multimedia '
ANV Fusion:
) features | A/V feature
A/V data_ [ Segmentation unsupervised[—® Mining v *
—» . and clustering Concepts & Complex )
eature Relationships Spatio- Question
extraction Temporal Answering
generic _ > Classification
detectors
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The ‘Machine listener’

 Goal: An auditory system for machines
- use same environmental information as people

« Signal understanding
- monitor for particular sounds
- real-time description

e Scenarios

I

- personal listener — summary of your day
- future prosthetic hearing device
- autonomous robots
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LabROSA Summary

 Broadcast
 Movies
e |ectures

DOMAINS

* Meetings

» Personal recordings
« Location monitoring

ROSA

» Speech recognition
» Speech characterization
« Nonspeech recognition

» Object-based structure discovery & learning

e Scene analysis

» Audio-visual integration

e Music analysis

Understanding

m -

=  Structuring

@)

— e Search

6 e Summarization
— e Awareness

o

a

<
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Summary: Audio Info Extraction

Sound carries information
- useful and detailed
- often tangled in mixtures

Various important general classes
- Speech: activity, recognition

- Music: segmentation, clustering

- Other: detection, description

General processing framework
- Computational Auditory Scene Analysis
- Audio Information Retrieval

Future applications
- Ubiquitous intelligent indexing
- Intelligent monitoring & description
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Audio Information Extraction:
panacea or punishment?
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