
DanDan’’s slides for EARS PIs slides for EARS PI mtg mtg

• 4 slides on novel features based on
linear predictor coefficients for the
frequency (not time) domain
ÿbasic signal model accepted at ICASSP03

• A couple of slides on a very new idea to
look for data-derived (ICA?)
articulatory-style features
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Temporal envelope featuresTemporal envelope features
(Columbia)(Columbia)

• Temporal fine structure is lost
(deliberately) in STFT features:

• Need a compact, parametric description...
time / sec
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Frequency-DomainFrequency-Domain
Linear Prediction (FDLP)Linear Prediction (FDLP)

• Extend LPC with LP model of spectrum

• ‘Poles’ represent temporal peaks:

• Features ~ pole bandwidth, ‘frequency’

TD-LP
y[n] = Siaiy[n-i] DFT

FD-LP
Y[k] = SibiY[k-i]

http://www.ee.columbia.edu/~marios/ctflp/ctflp.html
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FDLP features for speechFDLP features for speech
• LP algorithm distributes fixed pole set

within ~ 200 ms time window
ÿautomatic selection of ‘significant’ times

• Pole bandwidth ª transient sharpness
ÿ1 - max(|li|) in several bands as feature
ÿhelp with classification of stop bursts etc.

• Pole frequency ª timing within window
ÿfn - fn-1 as robust periodicity feature?



FDLP preliminary resultsFDLP preliminary results
• Distribution of pole magnitudes for

different phone classes (in 4 bands):

•  NN Classifier Frame Accuracies:
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Data-derived phoneticData-derived phonetic
features (Columbia)features (Columbia)

• Find a set of independent attributes to
account for phonetic (lexical) distinctions
ÿphones replaced by feature streams

• Will require new pronunciation models
ÿasynchronous feature transitions (no phones)
ÿmapping from phonetics (for unseen words)

Joint work with Eric Fosler-Lussier



ICA for feature basesICA for feature bases
• PCA finds decorrelated bases;

ICA finds independent bases

• Lexically-sufficient ICA basis set?

test/dr1/faks0/sa2
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Speech Fragment RecognitionSpeech Fragment Recognition
(Columbia)(Columbia)

• Model match for missing features:

• .. for partial observations in noise
• .. or integrating partially-seen streams

freq

Observation
Y(f)

Segregation S

Source
X(f)

P(M,S|Y) = P(M)∫P(X|M)·P(X|Y,S)dX·P(S|Y)
P(X)joint prob.

of model & seg. likelihood
‘boost’

segregation
likelihood



Missing speech informationMissing speech information
• Noise is not our primary concern;

casual pronunciation is a big issue
ÿnot missing Spectral information,

but missing Phonetic information

• Can we model this as:
ÿ ‘missing’ (i.e. non-articulated)
ÿ ‘features’ (i.e. phonetic-style features) ... ?

• Need to locate information... P(S|Y)



Class-dependent informationClass-dependent information
• Locate information per subword unit
• Mutual Information on time-frequency

plane over different phone classes

• ±250ms / 19 bark, TIMIT phone ctrs
All phones Vowels only



ICA for feature basesICA for feature bases
• PCA finds decorrelated bases;

ICA finds independent bases

• Find lexically-sufficient ICA basis set?
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ICA for feature basesICA for feature bases
• ICA coefficients ~ more independent:

• Looking for orthogonal subword features

test/dr1/faks0/sa2
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