Speech Separation for Recognition and Enhancement

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia University, NY

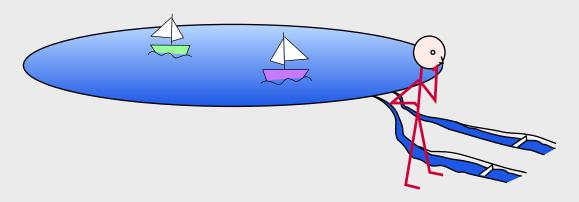
International Computer Science Institute, Berkeley CA

dpwe@ee.columbia.edu

http://labrosa.ee.columbia.edu/

- Speech in the Wild
- 2. Separation by Space
- 3. Separation by Pitch
- 4. Separation by Model

I. Speech in the Wild



- The world is cluttered sound is transparent
 - o mixtures are inevitable
- Useful information is structured by 'sources'
 - specific definition of a 'source': intentional independence

Speech in the Wild: Examples

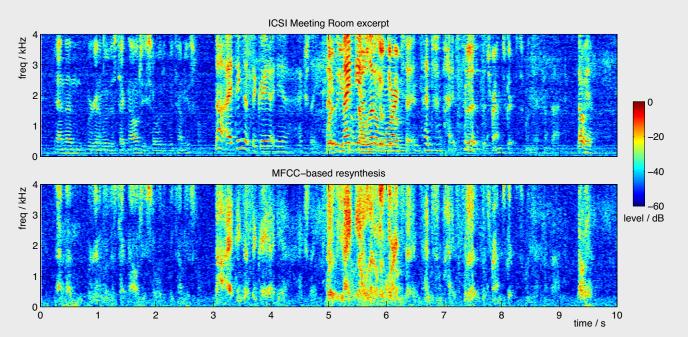
Multi-party discussions

- Ambient recordings
- Applications:
 - communications

- o robots
- lifelogging/archives

Recognizing Speech in the Wild

- Current ASR relies on low-D representations
 - e.g. 13 dimensional MFCC features every 10ms

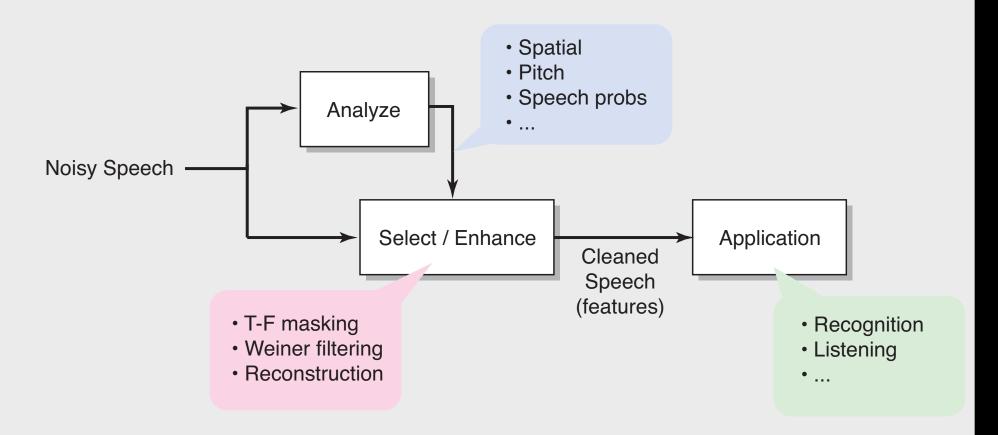


- very successful for clean speech!
- inadequate for mixtures

• We need separation!

2. Speech Separation

• How can we separate speech information?

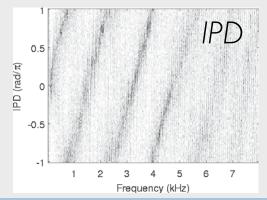


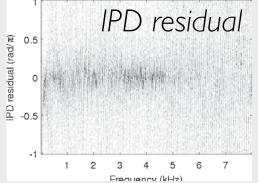
Separation by Spatial Info

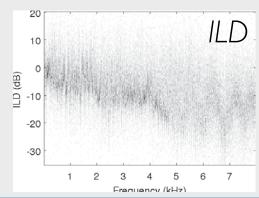
- Given multiple microphones, sound carries spatial information about source
- E.g. model interaural spectrum of each source as stationary level and time differences:

$$\frac{L(\omega, t)}{R(\omega, t)} = a(\omega)e^{j\omega\tau}N(\omega, t)$$

• e.g. at 75°, in reverb:

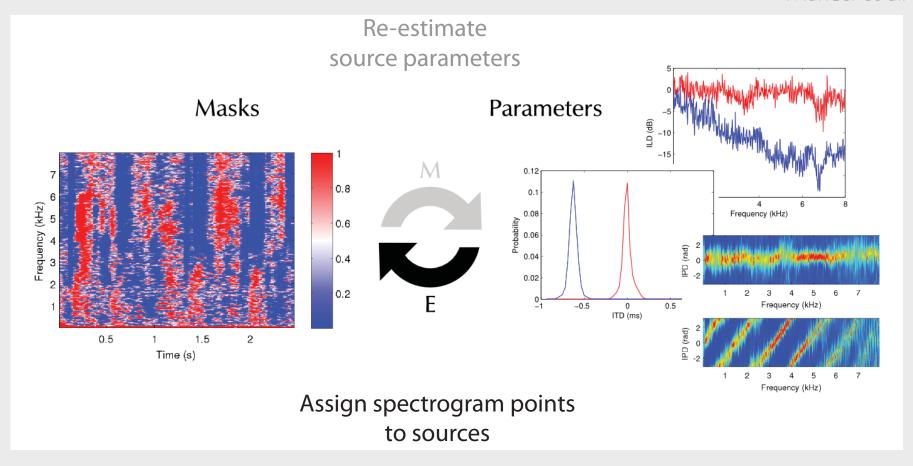






Model-Based EM Source Separation and Localization (MESSL)

Mandel et al. '10

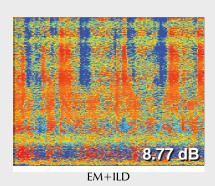


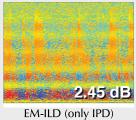
o can model more sources than sensors

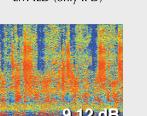
MESSL Results

Modeling uncertainty improves results

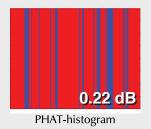
• tradeoff between constraints & noisiness







EM+1ILD (tied means)

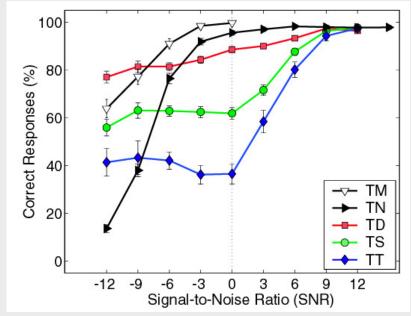


100 80 60 Human Sawada 40 Mouba MESSL-G $MESSL-\Omega\Omega$ 20 **DUET** Mixes 0 -40 -20 20 40 Target-to-masker ratio (dB)

Helps with recognitiondigits accuracy

3. Separation by Pitch

- Voiced syllables have near-periodic "pitch"
 - perceptually salient
 - o lost in MFCCs



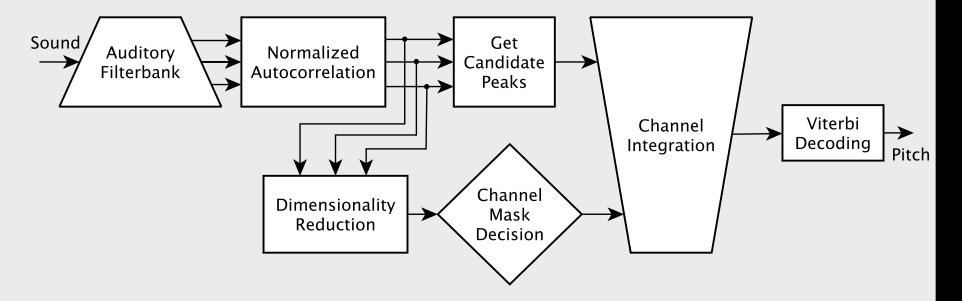
Brungart et al.'0

- Can we track pitch & use it for separation?
 - ... and other speech tasks?

Noise-Robust Pitch Tracking

BS Lee & Ellis '12

- Important for voice detection & separation
- Based on channel selection Wu, Wang & Brown '03
 - pitch from summary autocorrelation over "good" bands



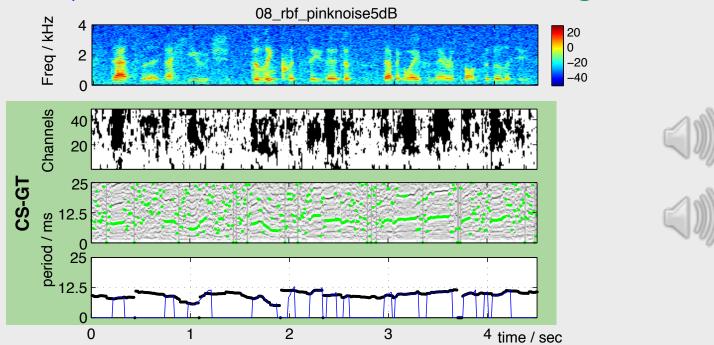
o trained classifier decides which channels to include

Noise-Robust Pitch Tracking

Channel-based classifiers

learn domain channel/noise characteristics

• then separate, or derive features for recognition



Only works for pitched sounds

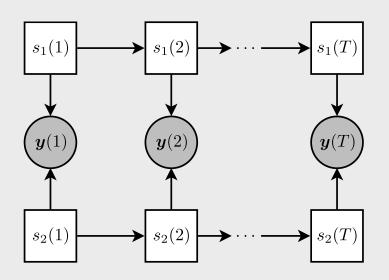
• need a broader description of the speech source...

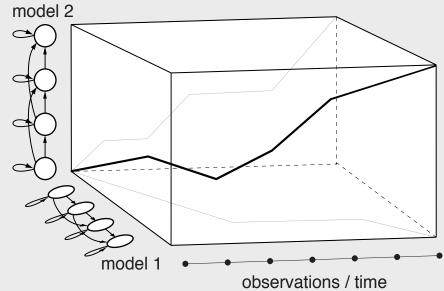
4. Separation by Models

• If ASR is finding best-fit parameters $\operatorname{argmax} P(W \mid X) \dots$

Varga & Moore, '90 Hershey et al., '10

- Recognize mixtures with Factorial HMM
 - o model + state sequence for each voice/source
 - o exploit sequence constraints, speaker differences



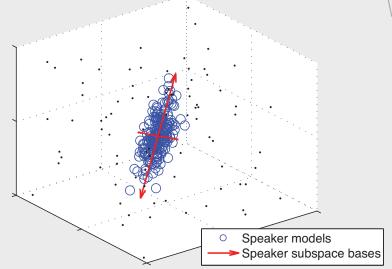


o separation relies on detailed speaker model

Eigenvoices

Kuhn et al. '98, '00 Weiss & Ellis '10

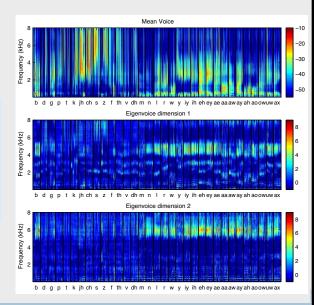
- Idea: Find speaker model parameter space
 - generalize without losing detail?



• Eigenvoice model:

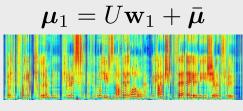
$$\mu=ar{\mu}+U$$
 w $+B$ h adapted mean eigenvoice weights channel channel model voice bases weights

• 89,600 dimensional space

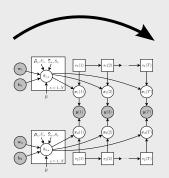


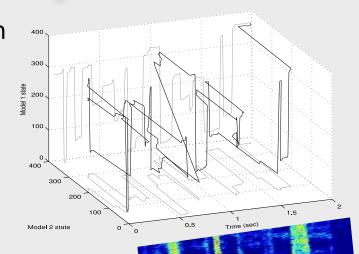
Eigenvoice Speech Separation

Find Viterbi path

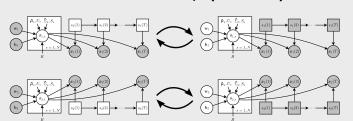


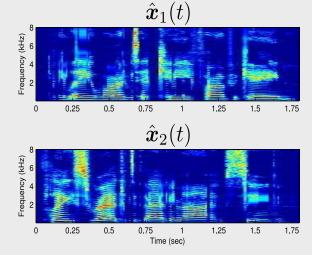
$$\mu_2 = U\mathbf{w}_2 + \bar{\mu}$$

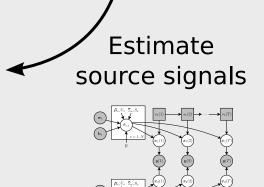




Update model parameters using EM algorithm from Kuhn et al., (2000)



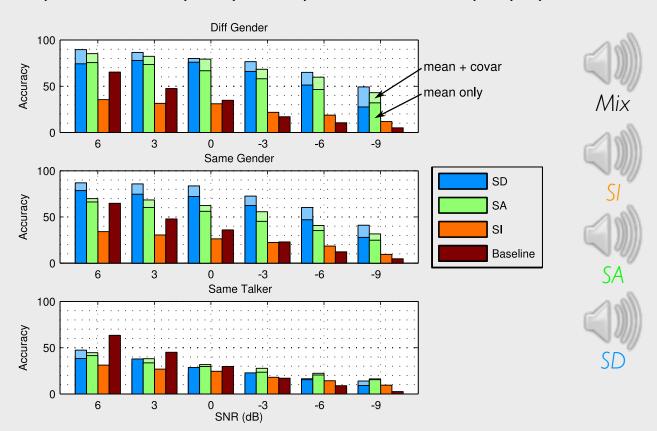




 $oldsymbol{y}(t)$

Eigenvoice Speech Separation

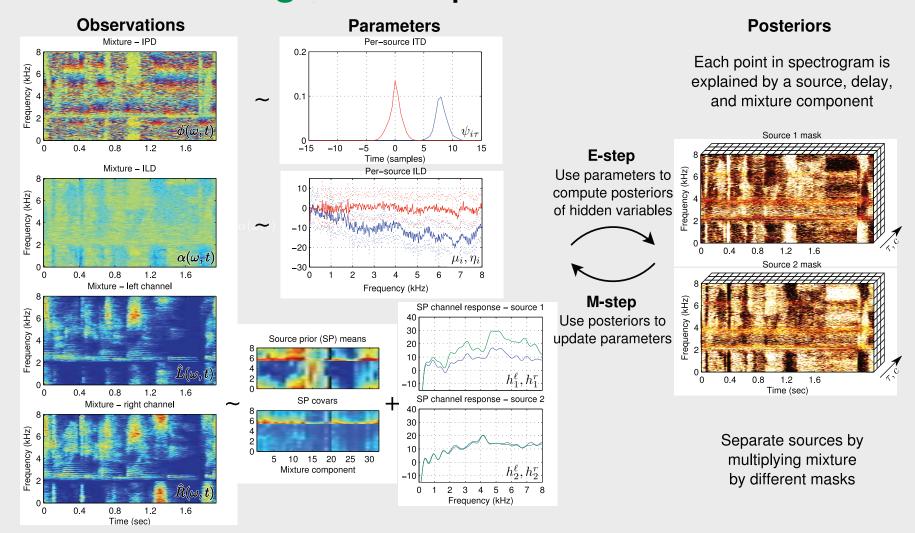
- Eigenvoices for Speech Separation task
 - speaker adapted (SA) performs midway between speaker-dependent (SD) & speaker-indep (SI)



Spatial + Model Separation

MESSL + Eigenvoice "priors"

Weiss, Mandel & Ellis '1 |



Summary

- Speech in the Wild
 - ... real, challenging problem
 - ... applications in communications, lifelogs ...
- Speech Separation
 - ... by generic properties (location, pitch)
 - ... via statistical models
- Recognition and Enhancement
 - ... separate-then-X, or integrated solution?

References

- John Hershey, Steve Rennie, Pedr Olsen, Trausti Kristjansson, "Super-human multi-talker speech recognition: A graphical modeling approach," Computer Speech & Lang. 24 (1), 45-66, 2010.
- Jon Barker, Martin Cooke, Dan Ellis, "Decoding Speech in the Presence of Other Sources," *Speech Communication* 45(1): 5-25, 2005.
- R. Kuhn, J. Junqua, P. Nguyen, N. Niedzielski, "Rapid speaker adaptation in eigenvoice space," . *IEEE Tr. Speech & Audio Proc.* 8(6): 695-707, Nov 2000.
- Byung-Suk Lee & Dan Ellis, "Noise-robust pitch tracking by trained channel selection," submitted to *ICASSP*, 2012.
- Michael Mandel, Ron Weiss, Dan Ellis, "Model-Based Expectation-Maximization Source Separation and Localization," *IEEE Tr. Audio, Speech, Lang. Proc.* 18(2): 382-394, Feb 2010.
- A. Varga and R. Moore, "Hidden markov model decomposition of speech and noise," *ICASSP-90*, 845–848, 1990.
- Ron Weiss & Dan Ellis, "Speech separation using speaker-adapted Eigenvoice speech models," Computer Speech & Lang. 24(1): 16-29, 2010.
- Ron Weiss, Michael Mandel, Dan Ellis, "Combining localization cues and source model constraints for binaural source separation," *Speech Communication* 53(5): 606-621, May 2011.
- Mingyang Wu, DeLiang Wang, Guy Brown, "A multipitch tracking algorithm for noisy speech," *IEEE Tr. Speech & Audio Proc.* 11(3): 229–241, May 2003.