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Speech in the Wild

® The world is cluttered

sound is
O mixtures are Iinevitable

® Useful information is structured by ‘sources’

O specific definition of a ‘'source”
intentional independence




Speech in the Wild: Examples

® Multi-party
discussions

® Ambient
recordings

® Applications:
© communications © robots Olifelogging/archives




Recognizing Speech in the Wild

® Current ASR relies on low-D representations
O e.g. |3 dmensional MFCC features every |0ms

ICSI Meeting Room excerpt

freq / kHz

O very successful
for clean speech!

O inadequate for
mixtures

freq / kHz

. 10
time/s

® We need separation!




Speech Separation

® How can we separate speech information?

« Spatial
* Pitch
» Speech probs

Noisy Speech —I

Select / Enhance > Application
Cleaned

Speech

_ (features) -
- T-F masking + Recognition

- Weiner filtering - Listening
 Reconstruction .




Separation by Spatial Info

® Given multiple microphones,
sound carries about source

® E.g. model interaural spectrum of each source
as stationary level and time differences:

L(w,t)
R(w,t)

= a(w)e?" N(w, t)

® e.g.at /5% in reverb:
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Model-Based EM Source Separation
and Localization (MESSL)

Parameters

o 4

E

Assign spectrogram points
to sources

O can model more sources than sensors




MESSL Results

° improves results
O tradeoff between constraints & noisiness
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Separation by Pitch

® Voiced syllables have near-periodic “pitch”

O perceptually
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® Can we track pitch & use it for separation!?
O .. and other speech tasks!?




Noise-Robust Pitch Tracking

® |mportant for voice detection & separation

® Based on
O prtch from summary autocorrelation over “good” bands

—— Auditory Normalized Ge_:t
. ) Candidate
Filterbank Autocorrelation Peaks

Channel Viterbi

l | h Integration Decoding

Channel
Mask
Decision

Dimensionality
Reduction

O trained classifier decides which channels to include




Noise-Robust Pitch Tracking

® (Channel-based classifiers

learn domain channel/noise characteristics
O then separate, or derive features for recognition
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® Only works for sounds
O need a of the speech source..




Separation by Models

® |f ASR is finding best-fit parameters
argmax P(W 1 X) ...

® Recognize mixtures with
O model + state sequence for each voice/source
O exploit sequence constraints, speaker differences

model 2

s1(1) ——> 51(2) s1(T)
s2(1) F——> 52(2) s2(T)
observations / time

O separation relies on detalled speaker model




Eigenvoices

ldea: Find

speaker model
parameter space

O generalize without | )
. . O Speaker models
| OS| ng d e'ta| |? . —> Speaker subspace bases

® Figenvoice model:

w = p + U w E; .{ Wi
- AR TR T
. . . ﬂg}. LR i [ g iy
adapted mean eigenvoice weights
model voice bases

0 89,600 dimensional space




Eigenvoice Speech Separation

p1 = Uwy
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Update model
parameters using
EM algorithm from

Find Viterbi path

Estimate

source signals




Eigenvoice Speech Separation

® FEigenvoices for Speech Separation task

O speaker adapted (54) performs midway between
speaker-dependent (5D) & speaker-indep (&)
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Spatial + Model Separation

® MESSL + Eigenvoice “priors”

Observations Parameters Posteriors

Per-source ITD

Each point in spectrogram is
explained by a source, delay,
and mixture component
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Summary

® Speech in the Wild

... real, challenging problem
... applications in communications, lifelogs ...

® Speech Separation

... by generic properties (location, pitch)
... via statistical models

... separate-then-X, or integrated solution?




References

John Hershey, Steve Rennie, Pedr Olsen, Trausti Kristjansson, “Super-human multi-talker speech
recognition: A graphical modeling approach,” Computer Speech & Lang. 24 (1), 45-66, 2010.

Jon Barker, Martin Cooke, Dan Ellis, “Decoding Speech in the Presence of Other Sources,” Speech
Communication 45(1): 5-25, 2005.

R. Kuhn, J. Junqua, P. Nguyen, N. Niedzielski, “Rapid speaker adaptation in eigenvoice space,” .
IEEE Tr. Speech & Audio Proc. 8(6): 695-707, Nov 2000.

Byung-Suk Lee & Dan Ellis, “Noise-robust pitch tracking by trained channel selection,” submitted to
ICASSP, 2012.

Michael Mandel, Ron Weiss, Dan Ellis, “Model-Based Expectation-Maximization Source Separation
and Localization,” IEEE Tr. Audio, Speech, Lang. Proc. 18(2): 382-394, Feb 2010.

A. Varga and R. Moore, “Hidden markov model decomposition of speech and noise,” ICASSP-90,

845-848, 1990.

Ron Weiss & Dan Ellis, “Speech separation using speaker-adapted Eigenvoice speech models,”
Computer Speech & Lang. 24(1): 16-29, 2010.

Ron Weiss, Michael Mandel, Dan Ellis, “Combining localization cues and source model constraints
for binaural source separation,” Speech Communication 53(5): 606-621, May 2011.

Mingyang Wu, DelLiang Wang, Guy Brown, “A multipitch tracking algorithm for noisy speech,” IEEE
Tr. Speech & Audio Proc. 11(3): 229-241, May 2003.



http://scholar.google.com/citations?view_op=view_citation&hl=en&user=ACcAdXgAAAAJ&citation_for_view=ACcAdXgAAAAJ:UeHWp8X0CEIC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=ACcAdXgAAAAJ&citation_for_view=ACcAdXgAAAAJ:UeHWp8X0CEIC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=ACcAdXgAAAAJ&citation_for_view=ACcAdXgAAAAJ:UeHWp8X0CEIC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=ACcAdXgAAAAJ&citation_for_view=ACcAdXgAAAAJ:UeHWp8X0CEIC

