Computational Auditory
Scene Analysis

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio
Dept. Electrical Engineering, Columbia Univ., NY USA

dpwe@ee.columbia.edu http://labrosa.ee.columbia.edu/

|. ASA and CASA
2. The Development of CASA

3. The Prospects for N
Computational Audition @5

CoLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK



mailto:dpwe@ee.columbia.edu
http://labrosa.ee.columbia.edu

|.Auditory Scene Analysis (ASA)

“ITo recognize the component sounds
that have been added together to
form the mixture that reaches our
ears, the auditory system must

somehow
that are based only on
those components of the sound that 2
have arisen from the same I over atues
environmental event.” %
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— Cusack & Carlyon 2004
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What is CASA!

® Computer systems for separating sounds
* based on biological “inspiration” (ASA)
* based on a source / stream formation paradigm
* frequently using pitch information (less binaural)
* frequently involving time-frequency masking

Segment Group

after Brown 1992

“If the study of human audition were able to lay bare the
principles that govern the human skill, there is some hope
that a computer could be designed to mimic it.”
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2. CASA Systems

® Literal implementations of the process
described in Bregman 1990:
e compute “regularity’” cues:
- common
oradual change
- harmonic patterns
common

Frequency (Hz)

Q

Original v3n7/

Brown 1992 | |
&Q Mixture TEE EE R . | Segregated

- Decomposition Initial Final Resynthesis speech
Ellis 1996 , : , .
and feature segregation and segregation
&Q extraction T-F unit labeling

Hu & Wang 2004

Hu & Wang 2004

Computational Auditory Scene Analysis - Dan Ellis 2014-07-07 - 6 /17



Key CASA Components

lemplates
HMMs
Bases

Spectrogram Memory /
MFCCs models

Sinusoids

Sound Front-end S;eng Action
—> . organization /
representation ,
separation

Segmentation

CASA
ICA, NMF
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How Important is Separation!?

® Separation systems often evaluated by
* |.e., comparison to pre-mix components
* is this relevant!

® Best systems use resynthesis

* e.g. |IBM's Superhuman Speech Recognizer
- “separate then recognize”

| separation
miX t-f masking ! identify find best words
| + resynthesis target energy words model
I
! identify

. 1 1
speech speech
target energy ! models models

|

|

|

! )

: source
knowledge

® Separating original signals is
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Machine Listening Tasks

® What is the goal! How to evaluate!?

Automgmc Emotion Music :
Narration Recommendation

)
Ne!
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Environment Music
Awareness Transcription

Classify

“Sound

: ' Speech/Music
Intelligence
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Sound
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Sound Separation Techniques

® Marr (1982): Levels of a perceptual problem:

Properties of the world
that make the problem
solvable

Specific calculations
& operations

Details of
how It's done

® What is ASA’s “computational theory™?

* Environmental regularities = CASA

* Independence = ICA

* Efficient / sparse description — NMFE

* Underlying explanation = MaxVQ, Factorial HMM




Independent Component Analysis

., Bell & Sejnowski ‘95
(¥4 4 . . .
® Separate “blind” combinations Smaragdis ‘98

by maximizing independence of outputs:
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Nonnegative Matrix Factorization

Lee & Seung 99

® Decomposition of spectrograms e
into + Virtanen ‘07
= :

e fits neatly with time-frequency masking
* useful for repeated events e.g. music
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Model-Based Explanation

Varga & Moore ‘90

® Probabilistic approach: Gales & Young ‘95
. . Ghahramani & Jordan '97
Find most likely parameters Roweis ‘01
Kristjiansson et al ‘06

Of some mOdeI Hershey et al "1 0

observations / time
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Missing Data Recognition

. . . . Cooke et al. 'O
® |ntegrate out missing information Barker et al. 05
heeded to a source...
* NO need to estimate Present data mask

missing/masked values

O
c
o
@
c
(O}
£
©

® Joint search
for model M
and segregation S
* use CASA as prior

on segregations
Pr(M, 5[Y) =

Pr()M) / Pr(X|M) -

Frequency Proximity Common Onset Harmonicity

Pr(XY, 5)
Pr(X)
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3.Whither ASA?

® Dictionary models can learn
harmonicity, onset, etc.

VQ256 codebook female

e secondary effects B O
(harmony) o
. the 8

ideas of CASA!

Level / dB

Codeword

® (Can also capture sequential structure
* e.g, consonants follow vowels (“'schema’)
* use overlapping patches!

® Computational theory or implementation?
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Future CASA Systems

® Representation

. o Templates
* still missing the key HMMs
baSiS Of fUSiOﬂ? Spectrogram
MFCCs
Sinusoids
° Separation
* learn from examples Segmentation

CASA

ICA, NMF

® Object description
e what Is salient to listeners! what is attention?

® Computational framework
* pragmatic search for solution (illusions)
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Summary

® Auditory Scene Analysis
* the functional problem of hearing

® Computational Auditory Scene Analysis
e computer implementations

® Automatic Sound Source Separation
* different problems, different solutions

“We have reached the point where we have a good
appreciation of many of the kinds of evidence that
the human brain uses for partitioning sound, and it
seems appropriate to begin to explore the formal
batterns of computation by which the process could
be accomplished.” Bregman, 1990
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