Improved recognition by combining different features and different systems

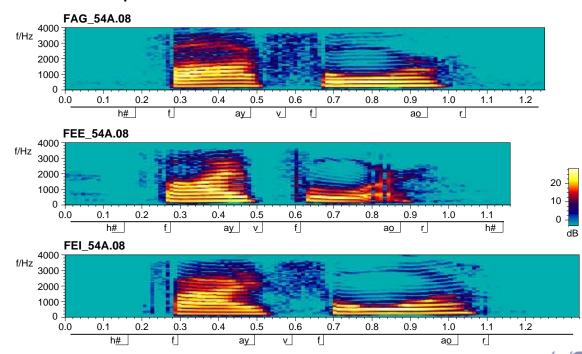
Dan Ellis
International Computer Science Institute
Berkeley CA
dpwe@icsi.berkeley.edu

Outline

- 1 The power of combination
- 2 Different ways to combine
- 3 Examples & results
- 4 Conclusions

The power of combination

- Combination is a general approach in statistics
 - several models → several estimates
 - if 'correct' parts more consistent than 'wrong' parts...
 - →averaging reduces error
- Intuition: choose 'right' model for each case
 - .. need to know when each is 'right'
 - .. need models that are 'right' at different times
- Continuum of combination schemes
 - conservative, ignorant of models
 - domain-specific, trained on models


Relevant aspects of the speech signal

Speech is highly redundant

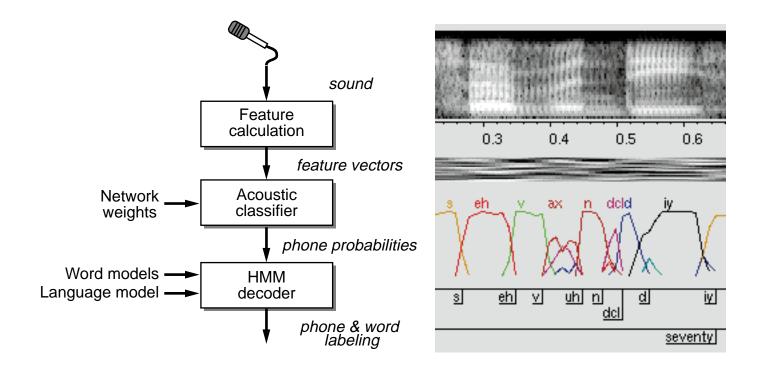
- intelligible despite large distortions
- multiple cues for each phoneme

• Speech is very variable

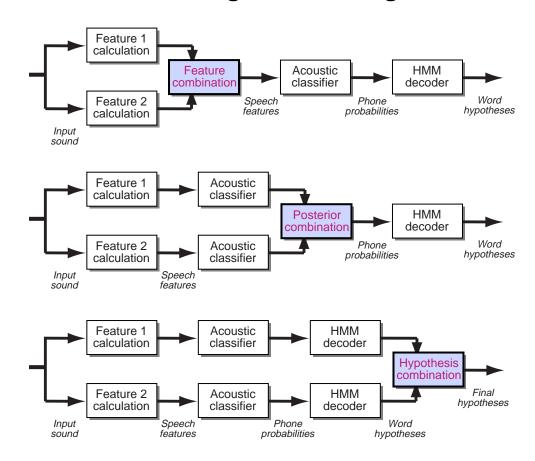
- redundancy leaves room for variability
- speakers can use different subsets of cues

Combinations for speech recognition

- Speech recognition abounds with different models
 - different feature processing, statistical models, search techniques ...
- Redundancy in signal
 - → many different ways to estimate, making different kinds of errors
- General combination is easier than figuring out what is good in each estimator
 - training data & training process usually the limiting factor


Outline

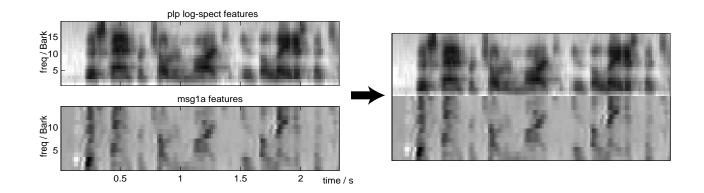
- 1 The power of combination
- 2 Different ways to combine
 - Feature combination
 - Posterior combination
 - Hypothesis combination
 - System hybrids
- 3 Examples & results
- 4 Conclusions


2

Speech recognizer components

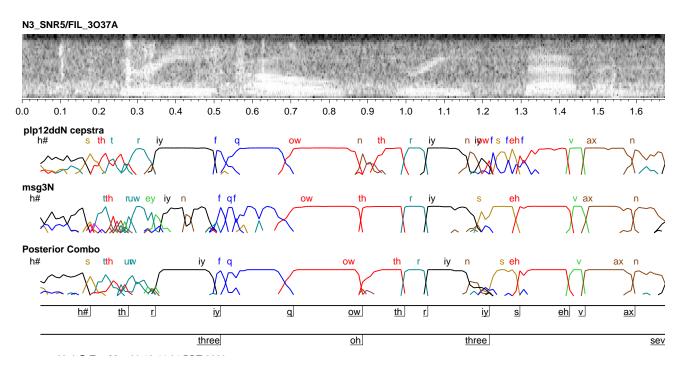
Different ways to combine

After each stage of the recognizer



Lots of other ways...

Feature combination (FC)


- Concatenate different feature vectors
- Train a single acoustic model

• It helps:

Features	Avg. WER
plp	8.9%
msg	9.5%
FC plp + msg	8.1%

Posterior combination (PC)

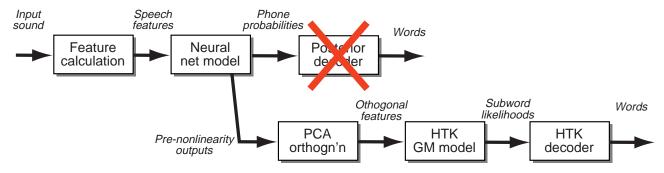
Sometimes better than FC:

Features	Avg. WER				
plp	8.9%				
msg	9.5%				
PC plp + msg	7.1%				

Hypothesis combination (HC)

(J. Fiscus, NIST)

- ROVER:
 Recognizer Output Voting Error Reduction
- Final outputs from several recognizers, each word tagged with confidence
- Align & vote for resulting word sequence


	there's					like	societies	@	@	ruin	engineers	and	lakes
cmu-isl1.ctm	there's	the	labs	@	@	like	societies	@	for	women	engineers	i	think
cu-htk2.ctm	there's	the	last	@	@	like	societies	@	true	of	engineers	and	like
dragon1.ctm	was	@	alive	@	the	legal	society	is	for	women	engineers	and	like
sril.etm	there's	а	lot	of	@	like	society's	@	@	through	engineers	@	like

 25% relative improvement over best single Broadcast News system (14.1%→10.6%)

Other combinations: 'Tandem' acoustic modeling

(with Hermansky et al., OGI)

Can we combine with conventional models?

- Result: better performance than either alone!
 - neural net & Gaussian mixture models extract different information from training data

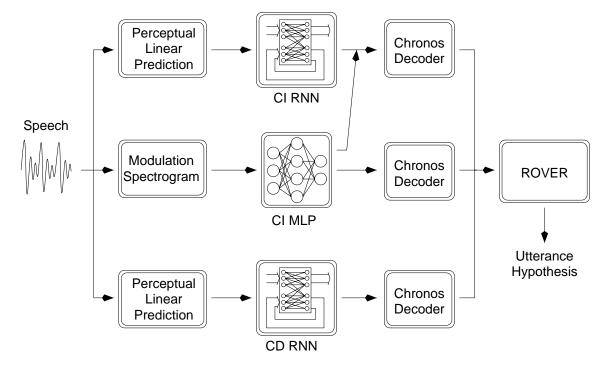
System-features	Avg. WER
HTK-mfcc	13.7%
Neural net-mfcc	9.3%
Tandem-mfcc	7.4%

How & what to combine

(with Jeff Bilmes, U. Washington)

- Combination is good, but...
 - which streams should we combine?
 - which combination methods to use?
- Best streams to combine have complementary information
 - can measure as Conditional Mutual Information,
 I(X; Y | C)
 - low CMI suggests combination potential
- Choice of combination method depends:
 - FC for streams with complex interdependence
 - PC makes best use of limited training data
 - HC allows different subword units

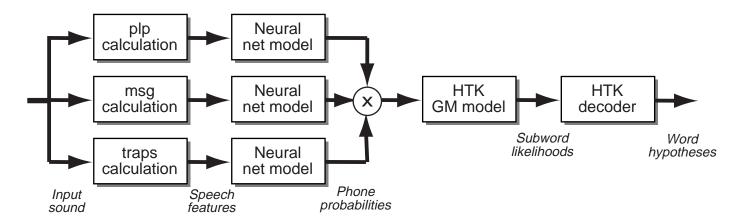
Outline


- 1 The power of combination
- 2 Different ways to combine
- 3 Examples & results
 - The SPRACH system for Broadcast News
 - OGI-ICSI-Qualcomm Aurora recognizer
- 4 Conclusions

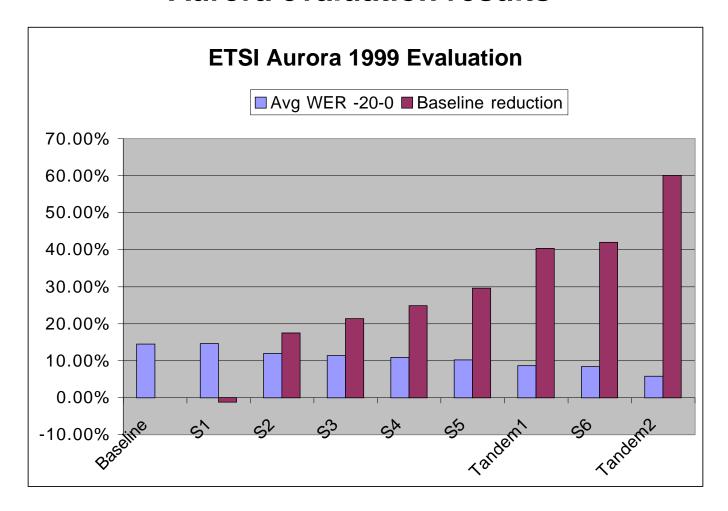
The SPRACH Broadcast News recognizer

(with Cambridge & Sheffield)

- Multiple feature streams
- MLP and RNN models, including PC
- Rover for hypothesis combination



20% WER overall (c/w ~27% per stream)


The OGI-ICSI-Qualcomm system for Aurora noisy digits

- PC of feature streams
- Tandem combination of neural nets and Gaussian mixture models:

 60% reduction in word errors compared to MFCC-HTK baseline

Aurora evaluation results

Conclusions

- Combination is a simple way to leverage multiple models
 - speech recognition has lots of models
 - redundancy in the speech signals allows each model to find different 'information'
- Lots of ways to combine
 - after feature extraction, classification, decoding
 - 'tandem' hybrids etc.
- Significant gains from simple approaches
 - e.g. 25% relative improvement from posterior averaging
- Better insight into sources of benefits will lead to even greater gains

