
Detailed graphical models for source separation
and missing data interpolation in audio

Manuel J. Reyes-Gomez1, Nebojsa Jojic2 and Daniel P.W. Ellis1

1 LabROSA, Department of Electrical Engineering, Columbia University 2 Microsoft Research

Methods for blind source separation based only on general properties such as source in-
dependence encounter difficulties when the degree of overlap and/or the dimensionality of
the observations make the blind inference problem unresolvable. Such situations require
additional constraints on the form of the individual sources, motivating the development of
models able to capture in detail the consistency and variability of a single source’s sound.
With single-chain HMMs this requires a very large number of states, making the models
marginally practical. Here we present two approaches to factorize the variability in detailed
models. First is a coupled subband model, where each source signal is broken into multiple
frequency bands, and separate but coupled HMMs are built for each band requiring many
fewer states per model. In order to avoid the unnatural state combinations that would arise
from independent models for each band (as in the multiband speech models of [1] and [2]),
we couple adjacent bands resulting in a grid-like model (fig. 1) for the full spectrum. Exact
inference of such a model is intractable, but we have derived an efficient approximation
based on variational methods.

We can use these subband models to separate source mixtures by combining them in a
factorial model and estimating Viterbi state alignment for each component (again using an
efficient variational approximation). A time-frequency mask calculated as the elementwise
maximum of the state means at each frame can extract energy almost completely dominated
by one of the sources, as in [3]. Our approach outperforms both in degree of separation
and computational time its full spectra (traditional HMMs) counterpart. Figure 3 (a) shows
the spectrogram of a mixture of two sources; panel (b) shows a separation mask, and panel
(c) shows the resulting masked elements corresponding to one source, with many cells
missing. Although the human perceptual system is quite tolerant of these deletions, rec-
ognizers trained on clean signals will be seriously disturbed by such distortion, motivating
our second model for efficient interpolation in time-frequency representations.

This model represents a signal with a limited number of states plus a transformation mech-
anism that models each frame of a spectrogram as a combination of a representative state
and a transformation of the previous frame. The transformation is done by using a set of
matrices T kt that relate a vector of N + 1 time-frequency coefficients centered around the

kth bin at frame t, X [k−N/2,k+N/2]
t with a vector of M + 1 coefficients centered around

the kth bin at frame t − 1, X [k−M/2,k+M/2]
t−1 . Although this model could also be used for

source separation as above, we use it here for interpolating missing spectrogram values
from observed ones. The resulting model is a two layer Markov random field with an upper
layer representing the transformation nodes and a lower layer representing the energies in
time-frequency cells (fig. 2). The model is intractable but inference is done using loopy
belief propagation. We applied our transformation model to interpolate the missing bins in
fig. 3 (c); panel (d) shows the result after 15 iterations, and panel (e) after 30 iterations.
Our interactive demo visualizes the interpolation process in real-time.
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   a)                                                                                                                                      b)

Figure 1: (a) Spectrogram partitioning and (b) multiband model.
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Figure 2: Interpolation Model
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Figure 3: Spectral masking and interpolation of missing data
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