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ABSTRACT

For the problem of separating sound mixtures, periodicity is a
powerful cue used by both human listeners and automatic
systems.  Short-term autocorrelation of subband envelopes, as in
the correlogram, accounts for much perceptual data.  We present
a discrete representation of common-period sounds, derived from
the correlogram, for use in computational auditory scene
analysis:  The weft describes a sound in terms of a time-varying
periodicity and a smoothed spectral envelope of the energy
exhibiting that period.  Wefts improve on several aspects of
previous approaches by providing, without additional grouping,
a single, invertible element for each detected signal , and also a
provisional solution to detecting and dissociating energy of
different periodicities in a single frequency channel (unlike
systems which allocate whole frequency channels to one source).
We define the weft, describe the analysis procedure we have
devised, and illustrate its capacity to separate periodic sounds
from other signals.

1.  INTRODUCTION

Human listeners are highly adept at interpreting the complex
soundfield reaching their ears as the superposition of the output
of several independent sources; this subtle process of auditory
organization has attracted significant investigation both in
psychoacoustics [1] and more recently via computer modeling
[2,3,4].  Although human auditory scene analysis is the result of
sophisticated operations at many levels, modeling work tends to
focus on low-level signal processing related to the
neurophysiology of the auditory periphery.  Given the
information observed to be present in the early auditory system,
to what extent can the raw signals arriving from different sources
be extracted without relying on more circumstantial constraints?

Pitch is perhaps the most important feature for sound
organization in listeners.  The pseudoperiodicity of many real-
world sound sources (notably the human vocal apparatus) gives
an extremely powerful basis for the accurate separation of the
characteristics of simultaneous sounds, as shown by double-
vowel perception experiments [5].  The perceptual segregation of
voices with differing pitches is so immediate and so strong as to
suggest the operation of special-purpose dedicated neural
circuitry.  Considerable effort has been expended in order to
construct equivalent computer models, with success only for a
limited range of phenomena.

The known broad-band nature of cochlea filters in the upper
spectrum makes it unlikely that listeners are segregating periodic
sounds on the basis of a narrowband analysis into separate
harmonics.  Consequently, computer models such as the
correlogram [6,7] use envelope autocorrelation to reveal the
periodicity of the energy in each peripheral frequency channel;
this frequency-channel-versus-lag-period display can serve as the
basis for isolating the spectra of mixture components.

The correlogram-type model of Meddis & Hewitt [8]
predicted listeners’ abilities to exploit pitch difference in
identifying vowel mixtures very accurately.  However, the inputs
to the model were essentially ‘static spectra’ or snapshots, and
the model assumed the presence of exactly two periodic sources.
The full-blown Computational Auditory Scene Analysis (CASA)
system of Brown [4] picked out a single periodic target from a
noisy background by segmenting the time-frequency plane into
locally-coherent regions he called ‘auditory objects’.  A search
procedure then fused these objects on the basis of consistent
local periodicity contours to produce pitch-based entities.  Both
of these systems were constrained to allocate the whole of a
frequency channel to just one source at each instant.

2.  THE WEFT REPRESENTATION

We developed a new representation, the weft, as part of a more
general CASA system [9] which includes other sound elements
for noisy and transient sounds.  (“Weft” is the Anglo-Saxon
word for the parallel fibers in woven cloth, giving the idea of a
connected set of threads [10]).  Wefts are also based on the
correlogram, but have the following advantages over the objects
of Brown [4]:

• A single weft represents all the energy associated with a
given period, corresponding to several of Brown’s objects;
the costly (and physiologically implausible) stage of
subsequent grouping is avoided.

• The analysis allows a single peripheral channel
simultaneously to contribute energy to wefts at several
different periods, rather than coarsely allocating entire
channels to sources.

• Whereas Brown’s resynthesis involved masked refiltering
of the original mixture, wefts hold sufficient information
to resynthesize the sounds they represent without
additional data.  This is valuable, for instance, to facilitate
restoration or interpolation of corrupted regions.

A weft is defined by two components, illustrated in figure 1.
The period-track stores the underlying period exhibited by the
weft as a function of time.  The smooth-spectrum records the
amount of energy reflecting that period in each time-frequency
cell of the analysis.  Since the system is based around a cochlea
filterbank [11], frequency resolution is rather broad and highly
overlapped.

Weft resynthesis is straightforward, according to a traditional
source-filter formulation:  An impulse-train is generated from the
period track.  This is broken into frequency channels by the
filterbank, and the gain of each channel is modulated before
recombination to produce a signal whose energy contour follows
the smooth-spectrum.  The spread and overlap of the filterbank is
accommodated by a non-negative least-squares inversion.
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Figure 1:  Calculation of a weft:  The three-dimensional correlogram volume (the short-time envelope autocorrelation of filterbank
output channels) is normalized and collapsed across channel to form a summary periodogram.  Peaks in this result are extracted to
produce the period-track portion of the weft.  The correlogram volume is then sampled at that period to extract the smoothed spectrum
of the weft for every channel at each time slice, taking care to factor-out interference from other energy in each channel.

3.  WEFT ANALYSIS

The process by which wefts are extracted from a mixture of
periodic sounds is illustrated in figure 1.  Successive blocks are
discussed below;  for greater detail, see [9].

Correlogram

The input sound is passed first through a linear filterbank
approximating the frequency analysis of the cochlea [11].  Each
channel is then half-wave rectified and smoothed with a 1 ms
window to remove fine time structure.  Short-time
autocorrelation is calculated by smoothing the product of an
envelope signal with delayed versions of itself.  These delays are
the samples on the lag period axis, and are spaced
logarithmically in time to approximate the resolution of human
pitch perception.  The correlogram is thus the three-dimensional
volume formed of the time-varying short-time autocorrelation of
each peripheral frequency channel at each lag period.

Period tracking

Broad-band periodically-modulated energy suitable for
representation as a weft is detected by looking for features in a
summary of the modulations present in the whole spectrum.  The
periodogram is formed by normalizing each autocorrelation
function by its overall energy (zero-lag value), then summing
across frequency channel to get a two-dimensional function of
lag period against time.  A peak exceeding a fixed threshold in
this domain triggers the creation of a weft element, indicating a
modulation period strongly represented in the correlogram, and
determining a point on the period track for the new weft.

The search for peaks in the periodogram starts at the shortest
period, and detected peaks are iteratively subtracted from the
remaining autocorrelation function at multiples of their period to
eliminate the subharmonic aliases always produced by
autocorrelation.  (This makes a shaky but serviceable assumption
of linearity which we lack the space to consider).  As well as
preventing ‘ghosts’, the subtraction is intended to reduce or
eliminate the interference between subharmonics of a short-
period modulation and longer modulation periods in the same
channel.

Period tracking is guided by the existing wefts, so that a
modulation period detected in a previous time frame will be
subjected to a lower threshold for continuation, and may even be
‘restored’ across short gaps in the periodogram.

Surface extraction

The result of period tracking is a set of ‘active’ wefts for the
current time step with known periods but unknown spectra.  The

next stage extracts these spectra by looking back into the three-
dimensional correlogram volume at the indicated lag period.  For
each frequency channel, an autocorrelation peak at that lag
indicates unobscured evidence of the modulation period.
Subharmonic aliases are also removed from the correlogram at
the multiples of tracked periods, so the remaining peak value is
approximately proportional to the energy (average squared
amplitude) of the periodic modulation

The presence of incoherent noise in a channel is additive in
the power domain, and hence has a nonlinear effect on the
envelope and the autocorrelation function.  A simplified analysis
[9] of the situation where the excitation consists of impulses at a
period much longer than the peripheral filter impulse response
predicts the autocorrelation peak value, P, is given by:

P = d·M2 + (1-d)·N2 (1)

where N is the envelope ‘noise floor’, M is the envelope level
during idealized rectangular excitation bursts (assumed equal to
√(N2+L2), where L is the noise-free peak), and d is the ‘duty
cycle’, i.e. the ratio between the impulse-response duration and
the modulation period of the excitation bursts (see fig. 2).  In this
case, the average autocorrelation A across all lags beyond the
intrinsic channel correlation (i.e. decorrelating the noise) is:

A = (d·M + (1-d)·N)2 (2)

Both P and A may be robustly measured from an autocorrelation
function, allowing eqns. (1) and (2) to be solved for N and M,
thereby giving L, the peak amplitude of the periodic component
of the envelope.  This procedure relies on a value for d, which
depends  on  both  the  modulation  period  and  the  filter
channel characteristics, and is not defined when the impulse
response is long compared to the modulation.  However, in the
noiseless case (i.e. N = 0),

d = A/P (3)

In  practice,  this analysis gives adequate results over most of the
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Figure 2:  The idealized envelope waveform with modulation at
period T and impulse response length d·T, sketched both with
(solid) and without (dashed) additional aperiodic noise.
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Figure 3:  Comparison between a slice of a weft ‘smooth spectrum’ recovered for a periodic signal analyzed in isolation, and the weft
produced for the same signal when analyzed in the presence of 0 dB SNR spectrally-matched noise.
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Figure 4:  Wefts for a pair of vowel-like signals analyzed separately and mixed together.  Each panel illustrates a weft with two frames:
the smooth spectrum as a function of time (x-axis) and frequency (y-axis), and the pitch-track, also drawn on a log-frequency y-axis.

range of interest.  It is applied using a table of values for d
measured according to eqn. (3) for all 40 frequency channels
over all 240 quantized values of the lag period.  When the
measured average-to-peak ratio for some autocorrelation line is
larger than the appropriate d, additive noise is presumed present
and factored-out from the weft energy by these equations.

If a periodic signal is being masked by a stronger signal in
the same frequency band, its autocorrelation peak may be
hidden.  To accommodate this situation, even non-peak
autocorrelation values are recorded as an ‘upper-bound’ on the
energy of the modulation in that channel.  This can constrain
estimates of the masked envelope based on temporal
interpolation or other sources of information.

4.  RESULTS

Wefts are intended to be used in separating periodic signals from
added interference.  Questions we might ask include: how well
does the weft reject aperiodic noise?  How well can wefts
separate a combination of two periodic signals?  And how do
they perform on real signals, such as mixtures of speech?

Figure 3 shows a slice from the smooth spectrum of a weft
recovered from a broadband periodic signal.  The dotted line
shows how the extracted spectrum changes when noise of the
same power is added.  Some ‘bleed-through’ is noticeable in the
upper channels, but most of the spectrum is nearly unaffected.
Around the fundamental (in channel 7), the weft energy estimate
falls to zero when noise is added because the  periodic
modulation in these dips is completely masked.

Figure 4 illustrates the particularly difficult case of two
periodic signals colliding in pitch.  Signal “v1” (left column) has
a period of 200 Hz and a formant-like spectral peak around
1 kHz.  “v2” (right column) has a pitch sweeping from 140 to
280 Hz under a spectral prominence at 2.2 kHz.  The top two
panels show the wefts generated when each signal is analyzed in
isolation.  The lower two panels are extracted from the mixture
of the two signals.  Most obviously, there is a large gap in the
middle of v2 where the analysis has lost the second modulation
period—irretrievable in the situation of a pitch collision without
exploiting additional context (for instance, by extrapolating the
obscured signal until it reappears, for which wefts are well
suited).  Unfortunately, the spectral envelopes of both wefts
extracted from the mixture show evidence of both formants; the
factorization of periodic combinations needs additional study.

Figure 5 shows the weft analysis of a mixture of a male and a
female voice (taken from [4]).  The points to note are:

• The continuously-voiced male utterance gives a single
weft.  Stops and fricatives interrupt the female speech
resulting in a sequence of four wefts.

• Most time-frequency cells have contributed to both
signals;  factoring-out the interactions within each channel
gives each voice a different spectrum.

• The periodogram shows octave-collisions between the
voices at several points.  The predict-and-remove analysis
strategy has successfully disentangled this mixture.
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Figure 5: Weft analysis of a voice mixture:  The top panel shows the cochlea-model spectrogram above the periodogram for the
mixture of male and female voices from [4].  (The periodogram is displayed with an upside-down, logarithmic time axis, labeled by
frequency).  The lower panels show the smooth spectrum and period tracks of the five wefts extracted for this sound.  The continuously-
voiced male utterance is extracted as a single weft (left).  The female voice is recovered in four voiced segments, showing considerable
spectral overlap with the male voice (right).

The subjective quality of the separation and resynthesis has
been assessed via listening tests.  Nine subjects compared the
original to the resyntheses and rated the quality on a percentage
scale from identical (100%) to unrecognizable (0%).  Ratings
were 44% for the male voice and 30% for the female voice;
Brown’s [4] resynthesis of the male voice scored 37% in the
same test (his system did not extract a second voice).

These resynthesis examples may be heard on the Web at
http://www.icsi.berkeley.edu/~dpwe/research/icassp97/ .

5.  CONCLUSIONS

As part of a CASA system’s vocabulary encompassing both
periodic and aperiodic sounds, wefts are a useful low-level
representation that plausibly reflects the special-purpose pitch-
based sound-organization mechanisms apparently possessed by
human listeners.  Wefts are derived from a spectral
representation approximating the known function of the cochlea,
and are intended to reflect the information used in the auditory
system.  Peculiarities of the envelope-autocorrelation domain
require novel mechanisms to compensate for the interaction
between signals; to the extent that this resembles the processing
in the auditory periphery, its limitations may be less noticeable
to human listeners that would otherwise be expected.

Future developments of this work will improve the
resynthesis quality through a more accurate inversion of the
spreading effect of the filterbank, and improve the estimation of
component signal energies in channels reflecting multiple
periodicities through a detailed analysis of the autocorrelation of
envelopes of multi-periodic mixtures.
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