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Abstract
A methodology is presented for fundamental frequency estima-
tion of one or more voices. The signal is modeled as the sum of
one or more periodic signals, and the parameters estimated by
search with interpolation. Accurate, reliable estimates are ob-
tained for each frame without tracking or continuity constraints,
and without the use of specific instrument models (although their
use might further boost performance). In formal evaluation over
a large database of speech, the single-voice algorithm outper-
formed the best competing methods by a factor of three.

1. Introduction
The fundamental frequency (F0) of a musical sound predicts
the pitch that it evokes, and for speech it carries prosodic (and
in some cases segmental) information. It is of direct use in
applications such as speech processing, music transcription and
multimedia information retrieval, and serves also indirectly in al-
gorithms for spectral estimation or coding. However, the limited
reliability of common estimation algorithms is a severe obstacle
for many applications.

Some applications involve several simultaneous voices (con-
current speakers or polyphony). Estimating several F0s from a
single signal is hard. Even if a single estimate is required, the
competing voices interfere with estimation. An isolated voice
(homophony) may pose similar problems in the presence of re-
verberation, as each new note is accompanied by the decay of the
previous note. The monumental review of Hess [5] lists hundreds
of single-voice algorithms, and many more have been proposed
since. Comparatively fewer algorithms have been proposed for
multiple voices, but their numbers are already considerable (e.g.
[7,8], for reviews see [1,2]).

This paper presents methods for single voice F0 estima-
tion (YIN), and multiple voice F0 estimation (MMM), based on
a common methodology. The ideas are partly new, partly the
systematization of older ideas (in particular autocorrelation).
Formal evaluation shows that the single-voice algorithm YIN
performs much better than competing methods for single voice
estimation. The multiple-voice version awaits formal evalua-
tion.

2. Single voice: YIN
2.1. F0 estimation

The signal xt is modeled as a periodic function with period T , by
definition invariant for a time shift of T : for all t, xt−xt−T = 0.
The period is the smallest positive number T for which this holds
true. Conversely, if T is unknown it may be found by forming
the difference function:

dt(τ) = (1/W )

W∑
j=1

(xj − xj−τ )2 (1)
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king the smallest positive value of τ for which the function
o. Thus described, the method is similar to the AMDF
d [5,6] that takes the absolute value rather than the square.

loping the squared difference gives:

dt(τ) = rt(0) + rt−τ (0) − 2rt(τ) (2)

rt(τ) is the running autocorrelation (AC) function:

rt(τ) = (1/W )

W∑
j=1

xjxj−τ (3)

rst two terms in Eq. 2 are short-term power estimates
led at times t and t−τ . To the degree that they are constant
τ , functions d and r are opposites one of the other: to
of one corresponds a peak of the other. Note that the

tion of Eq. 3 differs with that of the familiar short-term
nction that uses W−j instead of W in the summation limit.
ethod thus seems similar to the autocorrelation method,

ich there are many variants. It differs however in several
s, enumerated here.
irst, the second power term in Eq. 2 is not constant (es-
lly for small W ), so the behaviors of d and r are not quite
alent. Of the two, d is to be preferred as it fits the periodic
l model. Second, d supports the definition of a “cumulative
-normalized” difference function:

τ) =

{
1 if τ = 0
dt(τ)/[(1/τ)

∑τ
j=1 dt(j)] otherwise (4)

ew function is a better substrate than d for period estima-
At zero lag it equals 1 rather than 0, and doesn’t approach
re the period. This avoids “too high” F0 estimation errors

rise if the algorithm incorrectly chooses the zero-lag dip,
emoves the need to set an upper limit on F0 estimates. It
ormalizes the function w.r.t. amplitude, an important pre-

site for the next step. In this third step, a threshold θ is
and among the set of minima of d′(τ) that fall below it,
e with the smallest τ is taken as the period estimate.
he threshold θ is the main parameter of the algorithm. It
limit on the ratio of aperiodic to total power allowable

n a “periodic” signal. Its value is not too critical (θ = 0.1
s well in most cases). Parabolic interpolation is used to
er the effects of limited sampling resolution.

Periodic/aperiodic partition

ose a signal xt and T an estimate of its period. The signal
e expressed as a sum of two signals at = (xt − xt−T )/2

t = (xt +xt−T )/2. We have b = x if x is purely periodic,
as a is zero unless x is not perfectly periodic. In this



gross error (%)
method gross error (low / high)

pda 16.8 (14.2 / 2.6)
fxac 15.2 (14.2 / 1.0)

fxcep 6.0 (5.0 / 1.0)
ac 5.1 (4.1 / 1.0)
cc 4.5 (3.4 / 1.1)

shs 8.7 (8.6 / 0.18)
acf 5.0 (0.23 / 4.8)

nacf 4.8 (0.16 / 4.7)
additive 3.1 (2.5 / 0.55)
TEMPO 3.4 (0.53 / 2.9)

YIN 1.03 (0.37 / 0.66)

Table 1: Gross error rates forYIN (bottom line) and several other
methods. Note that the new method produces much fewer errors
than competitors. See [4] for further details.

sense a and b are “periodic” and “aperiodic” parts, respectively.
Denoting:

||xt||2 = (1/W )

t+W∑
j=t+1

x2
j (5)

it is easy to verify that:

(||xt||2 + ||xt−T ||2)/2 = ||at||2 + ||bt||2 (6)

The left hand is a reasonable estimate of the signal power, while
terms on the right are powers of the aperiodic and periodic parts.
The partition is thus also a partition of signal power. An overall
“measure of aperiodicity” (relative to T ) can be defined as:

AT = ||at||2/(||at||2 + ||bt||2) (7)

Its value is 0 for a periodic signal, 0.5 for white noise, and 1 for
an “antiperiodic signal” (a signal such as xt = −xt−T ). This
measure can be used as an ingredient of a “voicing detection”
algorithm (a task that is not addressed here).

Parseval’s relation implies a similar partition of power spec-
tra: the power spectrum of x is the sum of the power spectra
of a and b. Thus, the decomposition gives a convenient access
to the “periodic” and “aperiodic” spectra (Fig. 1, top). [Note
that other definitions of periodic and aperiodic parts may be
preferable for certain applications. This definition offers opti-
mal temporal resolution, and generalizes well to several periods
as explained below.]

2.3. Evaluation

The YIN method was evaluated over a large database of speech
(about 1.9 hours of speech of 48 speakers in four languages).
Results are summarized in Table 1. The method was evaluated
also with singing voice [6]. A feature useful for music is that
the F0 range can be made as wide as desired without degrad-
ing performance. Practical limits are set by the sampling rate
(estimation is unreliable beyond fs/4) and computation cost (in-
verse to the square of the lower limit). Frequency resolution is
unlimited (thanks to parabolic interpolation) and time resolution
is optimal (one can’t go below 2T ). No tracking is involved, so
estimates are purely local in time. The algorithm is simple and
may be implemented efficiently.
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3. Two voices: MMM
F0 estimation

aveform zt is modeled as the sum of two periodic sig-
xt with period T , and yt with period U . The sum is not
sarily periodic, but we have for all t:

zt − zt−T − zt−U + zt−T−U = 0 (8)

ersely, if the periods T and U are unknown they may be
by forming the difference function:

t(τ, υ) =

t+W∑
j=t+1

(zt − zt−τ − zt−υ + zt−τ−υ)2 (9)

king the smallest values of (τ , υ) for which the function
o. If x and y are periodic the algorithm is guaranteed to
ed, except in a number of pathological cases where the
em is undetermined. This occurs when all components of
mpound are multiples of the same fundamental within the

h range (as when one period is multiple of the other).
concern is computation cost, as Eq. 9 must be evaluated

l (τ, υ). To save computation, the square may be expanded
xpressed as a function of autocorrelation terms:

τ, υ) = rt(0) + rt−τ (0) + rt−ν(0) + rt−τ−υ(0)

−2rt(τ) − 2rt(υ) + 2rt(τ + υ)

+2rt−τ (υ − τ) − 2rt−τ (υ) − 2rt−υ(τ)

osing that all useful values of rt(τ) have been precalcu-
evaluation of each step entails only 5 sums (if terms are
nged) instead of about 4W sums and W squares with Eq.
imilar formula can be expressed using difference functions
than autocorrelation functions.
nother concern is sampling resolution. Limited sampling
tion implies imperfect cancellation, and thus poor resolu-

This is addressed by quadratic interpolation in the vicinity
h local minimum of the d(τ, υ) surface.
eros of Eq. 9 occur along both axes τ = 0 and υ = 0. To
de them (without setting an upper limit on the F0 search
, the function is modified in two steps:

υ) =

{
1 if τ = 0 or υ = 0
dt(τ, υ)/[(1/τ)

∑τ
j=1 dt(j, υ)] otherwise

υ) =

{
1 if τ = 0 or υ = 0
d′

t(τ, υ)/[(1/υ)
∑τ

j=1 d′
t(τ, j)] otherwise

new function is equal to one rather than zero along the
It is however zero at (U ,V ) and all multiples (kU ,jV ). In
to find (U ,V ) while avoiding multiples, a threshold θ is

nd among the minima that fall below it, the one with the
est coordinates is chosen to give the period estimates. As
bed so far, the algorithm produces two estimates for each
whatever the number of sources.

Estimating the number of sources

section explains how to estimate the number of sources.
ider a signal zt, and U and V two period estimates. zt can
pressed as the sum of four signals:

ct = (zt − zt−U − zt−V + zt−V −U )/4

dt = (zt + zt−U − zt−V − zt−V −U )/4

et = (zt − zt−U + zt−V − zt−V −U )/4

ft = (zt + zt−U + zt−V + zt−V −U )/4 (10)
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Figure 1: Top: principle of the periodic/aperiodic partition used
by YIN. The signal x can be seen as the sum of a periodic part
(b) and an aperiodic part (a). Their powers sum up to the power
of x. On the basis of the ratio of powers of a to x, one can
decide if the signal is periodic or not. Bottom: similar partition
generalized to two periods (MMM). The signal z can be seen as
the sum of four signals. Their powers sum up to that of z. On the
basis of the reduction in power obtained by filtering out period
U , then period V (or V , then U ), it is possible to estimate the
number of periods contained in the composite signal.

It is easy to verify that they sum up to zt, and that their powers
sum up to the following estimate of total signal power:

(||zt||2 + ||zt−U ||2 + ||zt−V ||2 + ||zt−U−V ||2)/4 (11)

On their basis, we can define several “partial periodicity mea-
sures”:

AUV = ||ct||2/(||ct||2 + ||dt||2 + ||et||2 + ||ft||)
AV

U = ||ct||2/(||ct||2 + ||dt||2)
AU

V = ||ct||2/(||ct||2 + ||et||2) (12)

All measures share the same numerator: the amount of power left
over after canceling both U and V . The denominator of the first
is total power (as measured by Eq. 11). AUV thus reflects the
relative “error” that remains after modeling the signal as a sum
of two periodic sounds. The denominator of the second is the
power that remains after canceling only U . AV

U thus measures
the improvement to the fit when the second period V is added
to the single-period (U -only) model. AU

V likewise measures
the improvement when U is added to the V -only model. All
measures vary between 0 and 1.

On the basis of these measures we can propose the following
algorithm for determining the number of periods. It involves
three threshold parameters, θ1, θ2, θ3:

Treat x as single-period, estimate T and AT .
Treat as two-period, estimate U, V , AV

U, AU
V , AUV .

If AT < θ1

if T �= U and T �= V
--> one period: T

else if V = T
if AU

V < θ2

--> two periods: (T, U)
else
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--> one period: T
lse if U = T

if AV
U < θ2

--> two periods: (T, V )
else

--> one period: T

f AUV < θ3

--> two periods: (U, V )
lse

--> more than 2 periods (or aperiodic).

raphrase, T is reported if the single-period model gives a
fit (AT < θ1). In that case a second period (e.g. U ) may
e reported if the two-period model gives a better fit (e.g.

θ2), but only if T is among the solutions of this two-
d model (e.g. T = V ). Otherwise U and V are assumed to
rmonics of T and the two-period model is rejected. If the
-period model gives a bad fit, and the two-period model a
fit (AUV < θ3), the algorithm reports (U ,V ). If neither
l gives a good fit, the signal is assumed to contain more
wo periodic signals.

Dealing with amplitude variation

lgorithm works by joint cancellation of both signals. If
is imperfectly periodic, cancellation is imperfect and both

ates may be compromised. One common form of aperi-
y, amplitude variation (as in piano or guitar notes), can be
ed by modeling the observed waveform zt as the sum of
ignals xt and yt that are “periodic with variable amplitude”,
ch that for all t, xt − αxt−T = 0 and yt − βyt−U = 0.

um zt then obeys:

t − αzt−T − βzt−U + αβzt−T−U = 0, ∀t (13)

periods T and U are unknown they may be found (given
β) by forming the difference function:

, υ) =

t+W∑
j=t+1

(zt − αzt−τ − βzt−υ + αβzt−τ−υ)2 (14)

hoosing the smallest values of (τ ,υ) for which it is zero.
fore, it is computationally useful to expand Eq. 14 as

ction of autocorrelation terms. Conversely, if (T, U) are
n, (α, β) can be found by setting derivatives of dt(τ, υ)
espect to these parameters to zero:

= [rt(τ) − βrt(τ + υ) + β2rt−υ(τ)]/[rt−τ (0)

+β2rt−τ−υ(0) − 2βrt−τ (υ)]

= [rt(υ) − αrt(τ + υ) + α2rt−τ (υ)]/[rt−υ(0)

+α2rt−τ−υ(0) − 2αrt−υ(τ)] (15)

ation of α requires knowledge of β and vice-versa, but
can be found by applying Eqs. 15 iteratively. Each step
es d which is bounded from below by 0 so this procedure
converge. If none of (T, U, α, β) are known a priori, the
ithm can alternate between estimating (T, U) and (α, β).

Evaluation

al evaluation shows good performance on mixtures of rel-
y “clean” speech or musical instrument sounds, even when
re close, spectral envelopes are similar, and amplitudes
ismatched. As for most methods, performance degrades

ly in the presence of noise or aperiodicity (one important
as treated in the previous section). Formal evaluation is

performed and will be reported soon.



4. More than two sources
By construction, MMM may be extended to N periodic sources,
failing only if all partials happen to be multiples of N − 1 or
fewer frequencies within the search range. For N > 2 the
method becomes more sensitive to aperiodicity and noise, and
is also computationally expensive.

5. Conclusion
This paper presented methods to estimate one period (YIN) or
more (MMM) from music or speech sounds. YIN demonstrates
performance well beyond that of the best competing methods,
showing that the basic approach is sound and competitive with
spectral methods. MMM has not yet been formally evaluated,
but informally it appears to work well. Both methods are de-
rived directly from periodic (or sum of periodic) signal models,
and are thus well grounded in principle. Both operate frame-by-
frame, without using continuity constraints or voice or instru-
ment models. For single voices such constraints do not seem to
be necessary (performance is excellent), but to handle two voices
or more it is likely that they will be important for the best perfor-
mance (e.g. [8]). We believe that our time-domain methodology
offers a good alternative to the usual spectral domain approach
for applying such constraints.
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