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ABSTRACT

This paper summarizes several contributions to the study of audio
signal parameterization and source separation, more fully described
in [1]. The philosophy of Frequency-Warped Signal Processing pro-
vides powerful means for separating the AM and FM contributions to
the MS bandwidth of a complex-valued, frequency-varying sinusoid
p[n], transforming it into a signal with slowly-varying parameters.
The use of frequency- and harmonic-locked loops to track the phase
variation of analytic signals provides the necessary accurate instan-
taneous frequency information to drive frequency-warped filtering.

1. Bandwidth
The mean-square bandwidth of a signal z(t) may be expressed as [2]
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and oy and o2y are respectively the FM and AM contributions to
the total mean-square bandwidths.

Conventional signal processing techniques often make use of the
Fourier transform, which is suited for the spectral analysis of sta-
tionary signals, i.e., signals whose statistics are time-independent
[3,4]. However, the Fourier transform is ill-suited for analyzing sig-
nals with rapidly varying parameters. By frequency warping a signal,
i.e., selectively frequency modulating it, it may be possible to trans-
form it so that the resulting signal is stationary and has a simplified
spectrum which is more amenable to analysis. Frequency warping
may be thought of as attempting to “straighten out” nonstationarities
due to continuous variations in the instantaneous frequency of a sig-
nal. The FM component o3n 4 of the mean-square bandwidth may
be minimized, leaving only the AM component.

2. Instantaneous Frequency

Instantaneous Frequency has been discussed by several authors pre-
viously, for example [2, 5]. It may be defined for an analytic signal
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This definition is fraught with perils, as it is possible to get arbitrarily
large values with well-behaved signals [1, 2]. It makes sense to talk
about instantaneous frequency if we restrict the dialog to signals of
the form
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where a(t) > 0. We see here that in this context f(t) has reasonably

intuitive meaning.

3. Frequency-Warping
Let £(¢) be a continuous, real-valued function specifying the £-
frequency warp factor defined by

E(t) £ exp (j27r / t f(‘r)dT) . 10

Intuitively, the frequency-warping factor =* (¢) demodulates a signal

p(t) = a(t) exp (1'277/ fr)dr + j¢o) ®)
0

by displacing its instantaneous frequency f(t) by —£(t). This is
easy to see because
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and, by Eqn. (5), the instantaneous frequency is

1 darg{E"(t)p(t)}
— =2et= VIR = f(t) - £(b).
| S £ - 6t (10
Hence, we see the motivation for the name “frequency-warping”.
We introduce the notation

(PLE)E) £ EL()P(D) an

and call this the £-frequency-warped transform of the signal p(t),
where £(¢) is a continuous function.

‘We note that if we set £(¢) to be the instantaneous frequency f(¢) of
a signal, the signal p(t) is then demodulated by £%(t) to a constant-
phase signal
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In this case the demodulating function Z¢(t) is frequency-matched
to p(t). We see that frequency warping a signal p(t) is nothing
more than multiplying it by a unit-amplitude phase factor Z* (). To
invert the frequency warping we simply multiply the result by Z(¢).
Notationally, the inversion can be stated as

p(t) = ((p1&) 1 -€)(t) (15)

Another obvious fact is the linearity in the first argument of frequency
warping:

(w+21() = (W) + (2 18)(¢). (16)

4. Isolating single time-varying partials from
mixtures

If we have a low-pass filter LPF with an impulse response A(t) and a
passband equal in width to the bandwidth of the amplitude envelope
a(t) of p(t) then we may isolate p(¢) from an additive mixture
z(t) = p(t) + v(t), where v(t) is some unknown signal. We simply
calculate

B(t) = (h* (21 Y1 —f)(2), amn

where we have neglected the group delay of the low-pass filter.

To the extent that the frequency-warped interfering signal (¢ 1 f}(¢)
does not intersect the bandwidth of the filter LPF we may isolate p(t)
relatively cleanly, due to its decreased bandwidth after frequency-
matched frequency warping.

‘We may, similarly; high-pass filter the signal (z 1 f}(t) with a filter
HPF whose stop band coincides with the pass band of LPF . The re-
sulting signal after unwarping (remodulating) the high-passed signal
should be a signal without p(¢).

5. Frequency-Locked Loop

In order to apply the frequency-warped technique practically to iso-
lating partials from mixtures it is necessary to obtain a good esti-
mate of the instantaneous frequency fi(t) for each partial pi () we
wish to isolate from a mixture. To implement frequency tracking, a
Frequency-Locked Loop algorithm is introduced which uses the com-
plex winding error to update its frequency estimate. The input signal
is dynamically demodulated and filtered to extract the envelope. This
envelope may then be remodulated to reconstruct the target partial,
which may be subtracted from the original signal mixwure to yield
a, quickly-adapting form of notch filtering. Similar work has been
done by Costas and Kumaresan [6, 7].

Let the target signal p[n] be a complex-valued discrete-time signal
defined for n > 0 with sampling frequency f,

2 .
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where afn] is the instantaneous amplitude envelope, f[n] > 0 is the

instantaneous frequency, and ¢y is the phase offset at time n = 0.

We assume that f[r] and a[r] are slowly varying with respect to
the loop time constant of the tracking system, which will be defined
later.
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Figure 1: Signal flow for a basic FLL tracker.

Define the discrete-time slew rate of the instantaneous frequency as
1 A
fla = (flr] = fln = 10) . (19)
The input signal z[n] will be assumed to be a mixture of p{n] and
some unknown disturbance signal v{n}, i.e.
z[n] = pln] + v[n]. (20)
We start the FLL algorithm by demodulating the input signal z[n] by

multiplying it by the complex conjugate of the frequency-warping
signal )
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and where flk] € (0, f,/2), is the estimate of f [£] at time step
k. We assume that f[1] is reasonably close to f[1] by the criterion
suggested by Eqn. (29).

The complex demodulated signal is

d[n] £ E*[n]2]n] 24)
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+ E*[n]v[n].

This demodulated signal is subjected to a low-pass filter LPF which
has a cut-off frequency of f., unity gain at DC, and is assumed, for
now, to have zero group delay at all frequencies, reulting in a signal
u[n] such that

uln] = hppr * d[n] ) (26)
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with the assumptions that the slew rate f[n] is small and that

|f1%] = fIn]| < .. v 29)



In Egn. (28) we have assumed that the filtered disturbance term
hipr * {E*[n]v[n]} is negligible. More precisely, if the winding
criterion

hipr * {E°[n]v[n]} < hrpr * {E7[n]p[n]} (30

holds, the Winding Theorem guarantees that the phase winding is
dominated by the frequency of the partial p[n] [1].

We now consider the phase ¢, [n] of the signal u[n]. By using the
change in phase we can avoid the phase unwrapping problem:

Adu[n] & fuln] — du[n—1]  (formally) 31)
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where we assume that the phase disturbance ([n] is small. Because
the signal s[n] is over-sampled, we are guaranteed that |A¢, [n]} <
n. Consequently, A¢, [n] has a well-defined value which we may
calculate by using a standard complex arg(-) function.

Define the frequency tracking error at time n as

s 1
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We see immediately that we may close the loop to form an estimate
fln + 1] of f[n + 1] by computing

fln+1] = fln] + glnlesln] (37a)
~ fln] + gln] (f[n] — F[n)) (37b)
= (1 — g[r]) f[n] + glr]fln], (37¢)

where g[n] is the tracking gain of the system at time step n. This sys-
tem is especially nice because the frequency tracking system simply
reduces to a first-order difference equation in f [n] with closed-loop
gain

geln] £ 1— gln]. 38)

The tracking time constant of the system at time step n, in terms of
time steps, is given by
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log (ge[n]) :
1
- (40)
gln]
for small, slowly-varying g[n]. This system will converge if
Yk, |gelk]l <1 C3))

6. Harmonic-Locked Loop

The frequency-locked loop (FLL) algorithm of the previous section
performs fast and accurate tracking of the instantaneous frequency
of a single target partial in isolation. However, if the signal-to-noise

ratio is too large, tracking may break down. Acoustical signals
are often composed of complex mixtures of signals which bring
the signal-to-noise ratio for target partials down below the level
needed for tracking by the FLL method. Hence, for analyzing natural
signals, the FLL algorithm is an interesting, but fragile, tool for signal
analysis. In this section, we find that we may take advantage of the
harmonic structure of many natural acoustical signals to increase the
robustness of tracking significantly.

A harmonic signal T[n] is the sum

M
n} 2 Zpk[n] 42)
k=1

of the members px[n] of a harmonic set I, which is defined to be a
set of M harmonic partials T' = {px[n]}#L,, where each pi[n] is of
the form in Eqn. (18) and also has

filn] £ kfoln]. 43)
foln] is the instantaneous fundamental frequency, ot pitch, of T[n].

The problem, then, is to estimate fo[n] and the amplitudes ax[n] for
some specified range of n from the signal

z[n] = I'[n] + [n}, 44)

where ¥[n] is some unknown signal satisfying certain conditions to
be given later.

We take advantage of the information from each tracker by combining
each tracker’s instantaneous frequency correction term &y, k[n] to
form a weighted average of the ensemble correction as

R0
Eroln] = Y wiln] L2, 5)
k=1

where the € s x[n] are defined as in Eqn. (35) and

M
> wiln] = 1. (46)

There are many possible weighting schemes. A useful scheme is to
weight each update estimate by the reciprocal of its ¢ s-variance. If
we assume that

feln) = filn] + nxfnl, @7
where nx[n] is assumed to have a zero-mean Gaussian distribution
of variance o2 ;[»] and is independent across k, but not necessarily
across n, then the k-th estimate of the fundamental update is

erxln] =

eBn] £ s ulnl/k 8)
= foln] = foln] + m[r)/k (49)

and the maximum-likelihood fundamental frequency update, under
the stated assumptions, is
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il (/] ulnl)

&t fn] = (50)



Eqn. (50) is derived by maximizing the probability
p(esalnl,....esmln]|esoln]) = (51
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We may form the refined updates of the fz[n] by setting

&l i[n] = ket o[n]. (52)

From Egn. (50) and the assumption that the é% [»] are independent

across k, we find that the variance of this result is
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The variance of é} [n] is thus
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where the last inequality may be quite substantial.

Eqgns. (50) and (52) may be used to update the individual frequency

- trackers, using Eqn. (37a), constraining the harmonic frequency
estimates to being exact integer multiples of the fundamental. The
variance reduction in Eqn. (58) yields a powerful algorithm which
can track a harmonic signal through interfering noise. All of the
harmonic estimators pool their estimates together, sharing their mu-
tual information so that the ensemble fo[n] update estimate becomes
at least as good as the best single-harmonic estimator, and usually
much better.

7. Summary

The novel technique of Harmonic-Locked Loop tracking, using N
harmonically constrained FLL trackers, results in fast and accurate
estimation of the fundamental frequency of harmonic signals, such as
voices and certain musical instruments. The estimated fundamental
frequency is computed from a maximum-likelihood weighting of the
N tracking estimates, making it highly robust. The result is that har-
monic signals, such as voices, can be isolated from complex mixtures
in the presence of other spectrally overlapping signals. Additionally,
since phase information is preserved, the targeted harmonic signals
may be resynthesized and removed from the original mixture with
relatively little damage to the residual signal.

Applications include music restoration, source separation, speech
enhancement, speech compression, parametric MIDI control, and
time-frequency signal analysis.
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Figure 2: Flow diagram for harmonic-locked loop.



