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ABSTRACT

In the voice conversion algorithm based on the Gaussian
Mixture Model (GMM) applied to STRAIGHT, quality of
converted speech is degraded because the converted spec-
trum is exceedingly smoothed. In this paper, we propose
the GMM-based algorithm with dynamic frequency warp-
ing to avoid the over-smoothing. We also propose an ad-
dition of the weighted residual spectrum, which is the dif-
ference between the GMM-based converted spectrum and
the frequency-warped spectrum, to avoid the deterioration
of conversion-accuracy on speaker individuality. Results of
the evaluation experiments clarify that the converted speech
quality is better than that of the GMM-based algorithm,
and the conversion-accuracy on speaker individuality is the
same as that of the GMM-based algorithm in the proposed
method with the properly-weighted residual spectrum.

1. INTRODUCTION

Voice conversion is a technique used to convert one speaker’s
voice into another speaker’s voice [1]. In general, speech
databases from many speakers must be required to synthe-
size speech of various speakers. However, if a high qual-
ity voice conversion algorithm is realized, speech of various
speakers can be synthesized even with a speech database of
a single speaker.

As the voice conversion algorithm which can represent
the acoustic space of a speaker continuously, the algorithm
based on the Gaussian Mixture Model (GMM) has also been
proposed by Stylianou et al. [2][3]. In this GMM-based al-
gorithm, the acoustic space is modeled by the GMM with-
out the use of vector quantization, and acoustic features are
converted from a source speaker to a target speaker by the
mapping function based on the feature-parameter correla-
tion between two speakers.

Since voice conversion is usually performed with an analysis-

synthesis method, quality of an analysis-synthesis method
is also important to realize a high quality voice conversion
algorithm. As a high quality analysis-synthesis method,
STRAIGHT (Speech Transformation and Representation
using Adaptive Interpolation of weiGHTed spectrum) has
been proposed by Kawahara et al., which is a high quality
vocoder type algorithm [4][5].

In the GMM-based voice conversion algorithm applied
to STRAIGHT, quality of converted speech is degraded be-
cause the converted spectrum is exceedingly smoothed. In
this paper, we newly propose the GMM-based algorithm
with dynamic frequency warping to avoid the over-smoothing.

We also propose an addition of the weighted residual spec-
trum which is the difference between the GMM-based con-
verted spectrum and the frequency-warped spectrum, to
avoid the deterioration of conversion-accuracy on speaker
individuality.

2. STRAIGHT

STRAIGHT is a high quality analysis-synthesis method,
which uses pitch-adaptive spectral analysis combined with a
surface reconstruction method in the time-frequency region
in order to remove signal periodicity[4][5]. This method ex-
tracts FO (fundamental frequency) by using TEMPO (Time-
domain Excitation extractor using Minimum Perturbation
Operator), and designs excitation source based on phase
manipulation[4][5].

STRAIGHT can manipulate such speech parameters as
pitch, vocal tract length, and speaking rate, while main-
taining high reproductive quality.

3. GMM-BASED VOICE CONVERSION ALGORITHM
AND ITS SHORTCOMING

3.1. GMM-based Voice Conversion Algorithm

We assume that p-dimensional time-aligned acoustic fea-
tures &{[xo, 1, ..., Tp—1]T } (source speaker’s) and y{[yo,
Y1, ---, yYp—1]T} (target speaker’s) are determined by Dy-
namic Time Warping (DTW), where T denotes transposi-
tion of the vector.

In the GMM algorithm, the probability distribution of
acoustic features & can be written as

m m
p(x) = ZaiN(w;m, %), Zai =1L 20, (1)
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where N(x; pu,X) denotes the normal distribution with the
mean vector g and the covariance matrix 3. «; denotes a
weight of class ¢, and m denotes the total number of the
Gaussian mixtures.

The mapping function [2][3] converting acoustic features
of the source speaker to those of the target speaker is given
by
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Figure 1: Spectrum converted by the GMM-based voice
conversion algorithm (“GMM-converted spectrum”) and
spectrum of the target speaker (“Target spectrum”).

where ugz) and ugy) denote the mean vectors of class i for
the source and target speakers. 25”) denotes the covari-

ance matrix of class ¢ for the source speaker. ZEW) denotes
the cross-covariance matrix of class ¢ for the source and tar-
get speakers. In this paper, we assume that these matrices
are diagonal.

In order to estimate parameters (o, ugw), ug

Zg;’ w)), the probability distribution of the joint vectors z =
[T, yT]T for the source and target speakers is represented
by the GMM [6]. These parameters are estimated by the

EM algorithm.

v g

3.2. Application of GMM-based Algorithm to STRAIGHT

The cepstrum of the smoothed spectrum analyzed by STRA-
IGHT is used as an acoustic feature. In this paper, the
cepstrum order is 40 (the quefrency is 2.5 ms, and the sam-
pling frequency is 16000 Hz). In order to perform voice
conversion, the 1 to 40-th order cepstrum coefficients are
converted, and the 0-th order cepstrum coefficient, which
corresponds the signal power, is kept as the value of the
source speaker.

3.3. Shortcoming of GMM-based Algorithm

In the GMM-based algorithm applied to STRAIGHT, qual-
ity of converted speech is degraded because the converted
spectrum is exceedingly smoothed by the statistical aver-
aging operation. Figure 1 shows the example of the GMM-
based converted spectrum and the spectrum of the target
speaker. As shown in this figure, the over-smoothing exists
on the GMM-based converted spectrum.

4. GMM-BASED VOICE CONVERSION ALGORITHM
WITH DYNAMIC FREQUENCY WARPING OF
STRAIGHT SPECTRUM

In this paper, we propose the GMM-based algorithm with
dynamic frequency warping to avoid the over-smoothing.
An overview of the proposed algorithm is shown in Figure
2.

4.1. Dynamic Frequency Warping

In order to avoid the over-smoothing of the converted spec-
trum, spectral conversion is performed with the dynamic
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Figure 2: GMM-based voice conversion algorithm with dy-
namic frequency warping.

frequency warping [7][8]. In this technique, the correspon-
dence between the original frequency axis and the converted
frequency axis is represented by the warping function. This
function is calculated as the path which minimized the nor-
malized spectrum distance between the STRAIGHT log
spectrum of the source speaker and the GMM-based con-
verted log spectrum.

4.2. Conversion of Spectral Power

Conversion-accuracy on speaker individuality with the dy-
namic frequency warping is worse than that of the GMM-
based algorithm because the spectral power cannot be con-
verted. To convert the spectral power, we newly propose
the technique to add the weighted residual spectrum which
is the difference between the GMM-based converted log
spectrum and the dynamic-frequency-warped log spectrum.
By using this technique, we can recover the conversion-
accuracy on speaker individuality. In the proposed algo-
rithm, the converted spectrum S.(f) is written as

1Sc(f)| = exp[In|Sa(f)| +w(In|Sy (A —In|Sa(H]], (4)
0<w<1, (5)

where S4(f) and Sy (f) denote the dynamic-frequency-warped
spectrum and the GMM-based converted spectrum respec-
tively. Also, w denotes the weight for a residual spectrum.
The variations of converted spectra which correspond to
the different weights for a residual spectrum are shown in
Figure 3.

In this paper, evaluation experiments are performed to
investigate effects by the weight for a residual spectrum.
In the experiments, we used not only the weights of the
constant value but also the frequency-variant weights which
change on each frequency as follows
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Figure 3: Variations of converted spectra which correspond

to the different weights for a residual spectrum.
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Figure 4: Residual spectra weighted by the frequency-
variant weights which increase as the frequency is high
(“High-weighted residual spectrum”) and the frequency is
low (“Low-weighted residual spectrum”).

where f; denotes the sampling frequency. The residual
spectra weighted by those frequency-variant weights are
shown in Figure 4. For example, if we use the weight wp(f)
which increase as the frequency is high, the converted spec-
trum is more close to the GMM-based converted spectrum
in the high-frequency regions.

5. EVALUATION EXPERIMENTS

In order to evaluate the performance of the GMM-based
algorithm with dynamic frequency warping, we performed
experiments on speech quality and speaker individuality.
We also investigated effects by the weight for a residual
spectrum. The number of Gaussian mixtures was set to be
64, and the amount of training data was set to be 58 sen-
tences. The male-to-male and female-to-female voice con-
version were performed in each experiment.

As for the source information, the average of log-scaled
fundamental frequencies of the source speaker was converted
to that of the target speaker. The prosodic dynamic char-
acteristics between two speakers were not considered.

5.1. Evaluation Experiment on Speech Quality

In order to evaluate the quality of the converted speech by
the proposed algorithm, the subjective evaluation experi-
ment was performed. Eight listeners participated in the
experiment. An opinion score for evaluation was set to be
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Figure 5: Relation between the weight for a residual spec-
trum and speech quality.

a 5-point scale (5: excellent, 4: good, 3: fair, 2: poor,
1: bad). Three sentences which were not included in the
training data were used to evaluate.

The experimental result is shown in Figure 5. Error-
bars denote standard deviations. The converted speech
quality by the proposed algorithm is better than that of
the GMM-based algorithm (the weight is 1). About the
weight for a residual spectrum, the converted speech qual-
ity without a residual spectrum (the weight is 0) is best.
Also, the converted speech quality with the weight which
increase as the frequency is high (“High”) is better than
that of the weight which increase as the frequency is low
(“Low”). When we use the weight “Low”, the converted
spectrum is smoothed exceedingly in the low-frequency re-
gions. As this result, it is considered that the speech quality
is degraded by the over-smoothing of the converted spec-
trum in the low-frequency regions.

5.2. Evaluation Experiments on Speaker Individuality
5.2.1. Objective Evaluation Experiment

In order to evaluate the conversion-accuracy on speaker in-
dividuality of the proposed algorithm, the objective evalua-
tion experiment was performed by the cepstrum distortion
(CD) between the converted speech and the target speech.
Ten sentences which were not included in the training data
were used to evaluate.

The experimental result is shown in Figure 6. CDs by
the proposed algorithm is worse than that of the GMM-
based algorithm (the weight is 1). About the weight for
a residual spectrum, CDs increase as the weight is more
close to 0. When we use the weight which increase as the
frequency is high (“High-weighted”), the deterioration of
CD is the same as that of using the weight which is 0.5,
and the converted speech quality (“High”) is better than
that of using the weight which is 0.5 as shown in Figure 5.

5.2.2. Subjective Evaluation Experiment

In order to evaluate the conversion-accuracy on speaker in-
dividuality of the proposed algorithm, the subjective evalu-
ation experiment (ABX test) was performed. Eight listen-
ers participated in the experiment.

In the ABX test, A and B were the source and the target
speaker’s speech, and X was either the converted speech as
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Figure 6: Relation between the weight for a residual spec-
trum and CD: Cepstrum Distortion.

follow,

o converted speech by the GMM-based algorithm
.4GMM? ,

e converted speech by the proposed algorithm without
a residual spectrum- - - “0-weighted”,

e converted speech by the proposed algorithm with the

weight which increases as the frequency is high- - - “High-

weighted”,

o synthesized speech by converting of the average log-
scaled FQ-: --“F0 only”,

o synthesized speech by converting of the average log-
scaled F0O and replacing the source speaker’s spectra
with those of the target speaker- - -“F0 & spectrum”.

“F0 & spectrum” was used to evaluate the conversion-accuracy

on speaker individuality when conversion of spectra was
perfect. Listeners were asked to select either A or B as
being most similar to X. Two sentences which were not in-
cluded in the training data were used to evaluate.

The experimental result is shown in Figure 7. The
conversion-accuracy on speaker individuality of the pro-
posed algorithm without a residual spectrum (“0-weighted”)
is worse than that of the GMM-based algorithm (“GMM?”).
However, we can recover the conversion-accuracy on speaker
individuality by using the weight which increases as the
frequency is high (“High-weighted”). In order to compare
these two algorithms (“GMM” and “High-weighted”), we
also performed another subjective experiment (preference
test) on speaker individuality. The result clarifies that the
conversion-accuracy on speaker individuality of the pro-
posed algorithm with the weight which increases as the
frequency is high is the same as that of the GMM-based
algorithm.

As shown in Figure 7, the conversion-accuracy on speaker
individuality of only F0 conversion (“F0 only”) is insuffi-
cient, and it can be improved by converting spectra.

6. CONCLUSION

In this paper, we propose the voice conversion algorithm
based on the Gaussian Mixture Model (GMM) with dy-
namic frequency warping of STRAIGHT spectrum, and
evaluate this conversion algorithm. We performed evalu-
ation experiments on speech quality and speaker individ-
uality, compared with the GMM-based algorithm. As the
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Figure 7: Correct response for speaker individuality.

results, it is clarified that the converted speech quality is
better than that of the GMM-based algorithm, and the
conversion-accuracy on speaker individuality is the same as
that of the GMM-based algorithm in the proposed method
with the properly-weighted residual spectrum.
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