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Perceptual coding of audio signals is increasingly used in the transmission and storage of
high-quality digital audio, and there is a strong demand for an acceptable objective method
to measure the quality of such signals. A new measurement method is described that combines
ideas from several earlier methods. The method should meet the requirements of the user
community, and it has been recommended by ITU Radiocommunication study groups.

0 INTRODUCTION evaluated using subjective criteria (see Section 1.1).
Since formal subjective tests are often expensive or im-

The digital transmission and storage of audio signals practical, an objective measurement method is needed
depend increasingly on data compression algorithms that that will model the sensory and cognitive processes un-
take advantage of the properties of the human auditory derlying subjective ratings.

system. The goal of such lossy algorithms is to control Objective quality measurement schemes that incorpo-
the spectrotemporal distribution of resulting coding dis- rate properties of the human auditory system have ex-
tortions so that they are below the threshold of heating, isted since 1979 [2], [3] and were mainly applied to
Distortions rendered inaudible in this way are still physi- speech codecs. The first perceptually motivated mea-
tally present, so the quality of these perceptual coders surement method applied to wide-bandwidth audio co-
cannot be assessed accurately by conventional methods decs was introduced in 1987 [4].

that measure the overall level of the distortion. An exam- More recently a number of other psychoacoustic mod-
pie often mentioned to illustrate this limitation is the so- els have been proposed to measure the perceived quality
called 13-dB miracle; that is, superimposed noise with of both narrow-band speech and wide-band audio (see,
a spectral structure adapted to that of the audio signal for example, [5]-[11]). The emergence of these various
is almost inaudible even when the resulting unweighted approaches for measuring audio quality emphasizes the
signal-to-noise ratio declines to 13 dB[ 1]. For this rea- requirement for a standardized method for practical use.
son the audio quality of a perceptual coder is typically Accordingly the ITU began standardization activities to

coordinate the efforts of a number of model proponents.
A method for narrow-band speech, based on the model

* Manuscript received 1999 February 19; revised 1999 No- described in [7], was accepted as a standard by the ITU-vember 29.
** Now with T¢pholm & Westermann ApS (Widex), Co- T [12]. Also, a method for wide-band audio was recently

penhagen, Denmark. adopted by the 1TU-R [13] and is the subject of this paper.
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The proposed standard method, known as PEAQ (per- degradation was calculated for individual frames, and
ceptual evaluation of audio quality), is based on gener- the overall quality of the speech sample was not
ally accepted psychoacoustic principles (such as [14], computed.
[15]). Although some aspects of the peripheral ear com- Another measurement scheme, called auditory spec-
ponent correspond to the earlier models, there are also tral difference (ASD), described by Karjalainen [3], was
significant differences. Further, a novel cognitive com- based on ideas introduced by Schroeder, Atal, and Hall.
portent is included to account for higher level processes A filter bank with overlapping filters replaced the frame-
underlying quality judgments. For example, the salience based analysis, a model for temporal masking was in-
of audible distortions can vary depending on the larger eluded, and the method for incorporating absolute

context, and time-varying distortions should be inte- threshold was modified. Both input signals were pro-
grated in some reasonable way. cessed in exactly the same way, producing two internal

A high-level representation of the model is shown in representations. These internal representations were
Fig. 1. In general it compares a signal that has been compared to explain perceived differences between the
processed in some way with the corresponding time- input and output signals of a speech coding algorithm.
aligned original signal. Concurrent frames of the origi- Again, the overall quality of a speech sample was not
hal and processed signals are each transformed to a computed. The temporal resolution of ASD approxi-
basilar membrane representation, and differences are an- mates that of the human auditory system better but in-
alyzed further as a function of frequency and time by a creases the complexity of the algorithm.
cognitive model. The latter extracts perceptually rele- Brandenburg [4] developed another perceptually moti-
vant features, which are used to compute a measure of vated measurement method, called noise-to-mask ratio
quality. As indicated in the figure, a number of interme- (NMR), to assist in the development of audio compres-
diary model output variables (MOVs) are available, sion algorithms. The complexity of the scheme was re-

A selected set of MOVs is mapped to an objective duced compared to NL, and it used a worst-case spread-
quality grade. The mapping was established by mini- ing function for distributing energy at a particular
mizing the difference between the distribution of objec- frequency to adjacent frequencies. As in NL and ASD,
tive measurements and the corresponding distribution of the masked threshold was optimized for noise masking
mean subjective qualities for an available data set. tone, and a model of temporal masking was included.

Unlike the earlier methods, NMR attempted to evaluate

1 DEVELOPMENT HISTORY the overall perceived quality of longer excerpts of audio.
The reliability of objective quality estimates can only

Schroeder, Atal, and Hall [2] first described an objec- be measured by comparison with corresponding judg-
tive quality measurement scheme that incorporates prop- ments obtained from subjective listening tests. An ITU-

erties of the human auditory system. Their system, R recommended procedure describes a careful test meth-
called noise loudness (NL), estimated the perceived odology for obtaining the so-called basic audio quality
loudness of noise inserted by a speech coding algorithm, of a device based on such subjective judgments. The
Noise was defined as the difference between the input objective during the development of PEAQ was to pre-
and output speech signals, and was estimated for each dict the basic audio quality using objectiv e measure-
time frame of approximately 20 ms. The estimate of the ment methods.
perceived loudness of a noise signal depended on the
degree to which it was masked by the speech signal. 1.1 ITU-R Work on Subjective Audio Quality
The masked threshold was derived from experiments Assessment
in which a noise was masked by a tone. The signal ITU-R Recommendation BS.1116 [16] defines meth-

ods for the subjective assessment of small audio impair-
ments in audio signals as well as appropriate procedures
for analysis of the subjective data. The result of a test
conducted according to this procedure is the basic audio
quality of the system under test. During the test, the
listener is free to listen to any one of three audio sources
A, B, or C. Source A is known to be the reference

signal. However, sources B and C may 'be either the
reference signal or the test signal, and the assignment
is determined randomly on a given trial. After extensive

training, the listener is asked to rate sources B and C
relative to source A according to the continuous five-
grade impairment scale defined in ITU-R Recommenda-
tion BS.562-3 _[17] and shown in Fig. 2. Either source
B or C should be indiscernible from source A, and the

other might reveal impairments. Any perceived differ-
L encesbetweenthe referencesignal and the presumed

Fig. 1. High-level representation of model, test signal must be interpreted as impairments. Therefore
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the rating given by the listener is a global attribute that ITU92DI, ITU92CO, and ITU93 in the Appendix, where
reflects all detected differences between the reference brief descriptions of the test conditions are given. DB1
and the test signal, was created to allow all of the proposed models to be

To facilitate statistical analysis and to satisfy assump- tuned with the same set of materials covering a large
tions underlying the analysis model, the listener's rat- range of impairments, a variety of codecs, and degrada-
ings of the reference and test signals are transformed to tions from cascaded codecs.

a single value, called the subjective difference grade Completely new material was also required at critical
(SDG), definedas stages of the evaluation process to avoid bias due to

overfitting the models to the known data set. For this

SDG = gradet_= signal-- grade_fere,cc signal• reason, listening tests using the recommended method
described in [16] were conducted to generate two new

The SDG has a negative value if the listener identifies databases. Since the objective measurement method
the test signal correctly, and a positive value if the test should identify correctly any artifact that could appear
signal is erroneously identified as the reference signal, in the broadcasting environment, coding artifacts, as
An SDG of 0 corresponds to an imperceptible impair- well as more traditional artifacts such as distortion and
ment, and an SDG of -4 indicates a very annoying noise, were included. Committee members who were

impairment, not modelproponentscreated a seconddatabase(DB2)
in 1996 according to these requirements. Similarly, a

1.2 ITU-R Work on Objective Perceptual Quality third database (DB3) was created consisting mainly of
Assessment Methods coding artifacts from state-of-the-art codecs as well as

In 1994 the ITU-R initiated a process to identify and from older codecs. A summary of the contents of the
recommend a method for objective measurement of per- new databases is given in the Appendix.
ceived audio quality. A committee was created to clarify The process of selecting a measurement method began
the expected applications of such a method, to examine with a competitive phase in which the various proposed
the performance of existing methods, and to describe models were evaluated and compared. When it became
the method selected. If existing methods were found to clear that no one model was significantly better than all
be inadequate, the committee might also create a new of the others, a collaborative phase began in which all
method that would meet performance requirements, of the original proponents contributed to the develop-

A call for proposals resulted in responses from seven ment of a new and improved model. These phases are
model proponents. A competitive process for comparing described in detail in the following subsections.
the performance of the different models was carefully
considered. The ability to distinguish among medium- 1.2,10oml_titive Phase

and high-quality audio sequences was of primary inter- The seven models proposed for the objective measure-
est, and so the, accuracy of objective quality measure- ment of perceived audio quality are called DIX [5],
ments would be assessed only in relation to results from NMR [18], OASE [19], PAQM [6], PERCEVAL [8],

listening tests that conformed to ITU-R Recommenda- [20], [21], POM [22], and Toolbox (unpublished).
tion BS. 1116 [16]. An initial database (DB 1) was corn- The NMR, PAQM, PERCEVAL, POM, and Toolbox
piled, composed of material from listening tests con- models each use a discrete Fourier transform (DFF) with
ducted between 1990 and 1995 by the ITU and MPEG. a Hann window of about 20-ms duration and a 50%

The results of these tests included both subjective ratings overlap between successive windows to form a
and critical material processed by audio codecs. The frequency-domain representation of audio input. This is
different data sets are identified as MPEG90, MPEG91, followed by a nonlinear mapping of the spectral energy

from the frequency scale to a perceptual pitch scale. The
DIX and OASE models, however, use filter banks to

5.0 _ Imperceptible form the frequency-domain representation, thus benefit-
ing from an increased temporal resolution. The mapping
to the Bark scale is achieved by appropriate choices ,of
the filter center frequencies.

4,0 Perceptible but not annoying The transform to the Bark domain is followed by a
time-frequency spreading and by intensity compression
to form excitation patterns corresponding to the original

3.0 ---- Slightly annoying and test signals and to the distortion. Variables calcu-
lated from these representations include the noise-to-
mask ratio, which is sensitive to the level difference

2.0 Annoying between the masked threshold and the error signal
(NMR), the difference between original and test excita-
tion patterns (PAQM, PERCEVAL, POM, Toolbox), an
overall probability of detection based on the difference

1.0 Very annoying between excitation patterns (POM, OASE), the partial
Fig. 2. ITU-R five-grade impairment scale, loudness of linear distortions (DIX, Toolbox) and non-
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linear distortions (DIX), sharpness [23], [24] (Toolbox), ysis of the listening test results was performed at Tera-
and alterations in temporal envelope (DIX). Each com as well as by other parties. The audio materials
method varies in how these and other variables are calcu- and the combined results from the subjective test sites
lated, and each method uses a different set of variables formed DB3 [25].

that are mapped to the basic audio quality measurement. In the autumn of 1997, 52 items from DB3 were re-
The seven models were evaluated with respect to their leased to the model developers, and several variations

performance using DB2 and a subset of DB 1. The test of the new model were created by adapting to a training
material selected was a joint effort between SR (Sweden) set that included these new data. Finally the proposed
and the BBC (United Kingdom). The listening tests model variations were evaluated at Swisscom using the
needed to create DB2 were carried out at NRK in Nor- remaining 32 "hidden" items in DB3. In addition, sire-
way, DR in Denmark, and NHK in Japan. Deutsche ilar comparisons were made using the results of a new
Telekom (Germany) and Teracom (Sweden) prepared a listening test, carded out independently by CRC (Can-
statistical analysis of the subjective data from the tests, ada) [26]. The evaluation process and the results ob-
The objective quality measurements from all the models tained are described in more detail in Section 6.
were generated at Swisscom (Switzerland), a neutral
site. In preparation for a final comparison, the model 1.2.3 Expected Applications
proponents then received half of DB2 for a further ad- The ITU-R committee also attempted to identify ap-
justment of the methods. Again, objective quality mea- propriate applications for the measurement method.
surements were generated at Swisscom. Classes of proposed applications are listed in Table 1

The performance of the methods was analyzed by Ter- (obtained from [13]).
acom (Sweden) as well as by the model proponents. A real-time implementation of the objective measure-
Though the results of some of the proposed methods ment method is required for some applications, whereas
showed a quite high correlation with the subjective rat- non-real-time measurement is sufficient for other appli-
ings, none of the methods appeared to fulfill the antici- cations. Furthermore a distinction is made between on-
pated requirements of users. Therefore the model propo- line and off-line measurements. In off-line measure-
nents agreed to develop jointly an improved ments the measurement procedure has full access to the
measurement method. The objective was to exceed the equipment or connection, whereas on-line measurement
performance of one of the better existing methods that implies that a program in progress must not be inter-
was set aside as a reference model, rupted by the measurement.

Test signals can be classified as natural or synthetic.
1.2.2 Collaborative Phase The list of natural test signals includes the critical audio

The objective of the collaborative phase was to com- sequences used in past listening tests for the evaluation
bine the best elements of the different methods into one of audio quality (see Appendix). The duration of a nat-
new method. Further, two versions of the method would ural test signal should be about the same as if it were
be developed to best fit the needs of the user community, to be used in a listening test, and is typically on the
One would be suitable for real-time implementations, order of 10-20 s. Note, however, that the part of the
whereas the other could require more computational test signal most susceptible to artifacts may be only a
power to achieve higher reliability. In addition to DB 1 short part of the total duration. The signals must be
and DB2, the EIA95 data set (see Appendix) also be- available both at the transmitting site and at the measure-
came available for training the models, ment site. Thus memory is required in the measure-

The validation procedure for the new methods was ment device.
designed in a way similar to that for the competitive Synthetic signals are defined mathematically and can
phase. The audio items and test conditions were defined be varied in a controlled way. These signals can be
in the spring of 1997, and the audio database was com- generated independently at the transmitting and mea-
piled by SR, Swisscom, and the BBC. The subjective surement sites, so memory in the measurement device

listening test was performed at three test sites by is not required. Due to the nature of such signals, it is
Deutsche Telekom, NHK, and SR, and the results were difficult, if not impossible, to derive subjective ratings
collected by SR in Sweden. An extensive statistical anal- for them. Therefore the measurement method has not

Table 1. Applications.

Application Brief Description

1 Assessment of implementations Procedure for characterizing different implementations of audio processing equipment,
in many cases audio codecs

2 Perceptual quality lineup Fast procedure that tests equipment or circuits before putting them into service
3 On-line monitoring Continuous process to monitor audio transmission in service
4 Equipment or connection status Detailed analysis of a piece of equipment or a circuit
5 Codec identification Procedure to identify type and implementation of a particular codec
6 Codec development Procedure characterizing performance of a codec in as much detail as possible
7 Network planning Procedure to optimize cost and performance of a transmission network under given

constraints
8 Aid to subjective assessment Tool for identifying critical material to include in a subjective listening test
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been validated against subjective ratings of synthetic
signals. 2.3 Spectral Analysis of Errors

Some effects, such as the perception of fundamental

2 PERCEPTUAL MEASUREMENT CONCEPTS frequency and associated harmonic structure, are easier
to model using linear spectra instead of basilar mere-

In the field of perceptual measurement techniques, brane excitation patterns. Objective perceptual quality

two main concepts for the estimation of audible distor- estimates are improved when models use variables based
tions are used: the masked threshold concept and the on linear spectra in conjunction with the other two
comparison of internal representations. Furthermore concepts.
some effects are easier to model when using linear spec-

tra instead of a basilar membrane representation. This 3 EAR MODEL
may be considered a third concept and is referred to as
spectral analysis of errors. As depicted in Fig. 1, the perceptual model is divided

into two main parts: the peripheral ear model and a
2.1 Distance from Masked Threshold model for higher level processing stages. In this context

The masked threshold concept (also known as noise the peripheral ear model contains all processing steps
signal evaluation) has been used in earlier perceptual mea- that transform the incoming sound into a basilar mem-
surement methods (for example, [2], [4]). In this approach brane representation (the excitation pattern).

(Fig. 3) the error signal, which is the difference between
the original and the processedsignals, is compared to the 3.1 Absolute Threshold
masked threshold of the original signal. An error at a The absolute threshold of hearing tends to be lowest
particular time and frequency is considered inaudible if its in the region of 2000- 3000 Hz and rises as the frequency
magnitude is less than a predefined masked threshold. The both decreases and increases from that point. This char-
main advantage of this approach is that the parameters of acteristic can be modeled using an appropriate outer and
the model (that is, the masked threshold functions) can be middle ear transfer function combined with the concept
directly verified using masking experiments, of internal noise. The outer and middle ear transfer func-

tion limits the bandwidth of audio signals. The internal
2.2 Comparison of Internal Representations noise is thought to be caused by blood streaming in the

The concept of comparison of internal representations head and by spontaneous nervous activity [14].
(also known as comparison in the cochlear domain),
introduced in 1985 by Karjalainen [3], is the basis of 3.2 Perceptual Frequency Scales
most of today's perceptual measurement methods (such Mechanical sound waves are converted to electrical
as [5], [6], [8], [19], [22]). It involves modeling the (neural) signals in the cochlea following a frequency-
excitation pattern on the basilar membrane by simulating to-place transformation. Depending on the frequency of
the signal transformations performed in the ear. Quality the input signal, different sections of the basilar mere-
measurements are derived by comparing the excitation brane have maximal displacement. The hair cells, which
patterns of both the original and the processed signals are the receptors measuring this displacement, are dis-
(see Fig. 4). This approach is much closer to the physio- tributed equally over the whole basilar membrane. Each
logical function of the auditory system than the masked hair cell reacts to a region of neighboring frequencies.
threshold concept. Therefore it is a better starting point The nonlinear frequency-to-place transform together
for the modeling of more complex auditory phenomena, with the linear distribution of the hair cells across the

basilar membrane leads to a nonlinear frequency percep-
tion, the so-called pitch. Depending on the psycho-

L L

Fig. 3. Masked threshold concept. Fig. 4. Comparison of internal representations.
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acoustic experiment, different frequency-to-pitch trans- and long-term memory. Echoic memory is a brief initial
fer functions can be found. In perceptual audio coding store that holds audio informat.ion long enough to be

and perceptual audio measurement, the Bark scale is passed to short-term memory, where it is maintained by
typically used. This scale goes back to the concept of a process of rehearsal. Subjective listening tests that
the critical ratio [27] and was defined by Zwicker and evaluate audio quality depend primarily on both the
Feldtkeller [28]. The Bark scale divides the range from short-term and the echoic memory stores in order to
20 Hz to 15 kHz into 24 nonoverlapping sections. A detect small differences between signals. This limitation
detailed discussion of perceptual pitch scales can be is accommodated in the ITU-R recommendation for the

found in [29]. subjectivelisteningtest procedure[16] by allowingtest
subjects to loop through short subsequences and to

3.3 Excitation switch at will between reference and test signals in the
The hair cells in the cochlea generate neural activity listening test.

in response to vibration of the basilar membrane induced Since measurements of the threshold of sensation form
by the incoming sound. For a sinusoidal signal, the pat- a distribution with a measurable variance, the threshold

tern of neural excitation measured in decibels is approxi- may be defined to be the signal level that gives a 0.5
mutely triangular in shape, and this shape is relatively probability of detection. The detection threshold for
invariant along the Bark scale. The lower frequency changes in the level of signals [just noticeable level
slope is largely independent of the exciting signal (about difference (JNLD)] depends on the sound pressure level
27 dB/Bark). However, the higher frequency slope de- of the input signal. At low input levels the JNLD is
pends strongly on the absolute sound pressure level of higher than at high input levels. For example, the JNLD
the signal. The slopeis about - 5 dB/Barkat high levels, is typically 0.75 dB at a level of 20 dB, and 0.2 dB at
and can be as steep as - 30 dB/Bark at very low levels, a level of 80 dB.
"l;his level dependency is due to a time-dependent feed-
back mechanism, so the best frequency selectivity is 3.5 Masking
reached some milliseconds after the onset of a signal. A signal that is clearly audible when presented alone

The shape of the excitation pattern for a narrow-band can be completely inaudible if presented together with
noise may be deduced from the detection thresholds of a second stronger signal [28]. The masked signal is
sinusoidal signals masked by the noise [14]. Alterna- called the maskee, the masking signal is called the
tively it may be inferred from measurements of the masker.
shapes of the auditory filters that simulate the frequency
response of the basilar membrane [15]. The shape of 3.5.1 Simultaneous Masking
a. filter may be estimated by measuring the detection Simultaneous masking may occur when the masker
threshold of a sinusoid at a given frequency while the and the maskee are present at the same time and are
frequency of a masker is varied. The measured thresh- quasi-stationary. The amount of masking is mainly in-
olds are assumed to correspond to aconstant signal-to- fluenced by the structure, level, and relative frequency
masker ratio at the output of the filter, and thus reflect distance of the signals. The maximum masking is usually
the shape of the filter. At moderate sound levels the obtained if both signals have the same center frequency.
filter shapes are approximately symmetric on a linear When thresholds are measured at varying distances from
frequency scale. However, at higher levels the low- the center frequency, the shape of the masked thresholds
frequency side becomes substantially flatter whereas the curve is similar to the excitation curve described earlier.
high-frequency side becomes slightly steeper. The neu- In the situation where a noiselike signal is masking a
ral excitation at a particular position on the basilar mem- tonal signal, the amount of masking is almost indepen-
brahe results from the outputs of several overlapping dent of the masker frequency. If the sound pressure level
filters. When these filter outputs are summed, the re- of a sine tone located close to the center frequency of a
suiting excitation pattern reproduces the asymmetric narrow band of noise is less than 5 dB below the level
level-dependent slopes of typical masking functions, of the noise, it becomes inaudible. When a tonal signal

After the cessation of an audio signal, the hair cells masks a noiselike signal, the amount of masking depends
and the neural processing stages need time to reach their on the frequency of the masker. It can be estimated by
maximum sensitivity again. The duration of this relax- the formula (15.5 + z/Bark) dB, where z is the critical
ation time depends on the level and the duration of the band rate of the masker [14]. In addition, at high signal
preceding audio signal, and can be more than 100 ms. levels nonlinear effects reduce the masked threshold near
The processing of strong signals is faster than the pro- the masker. Further, the masked threshold of several
cessing of weak signals, so a loud signal can overrun a signals combined is a nonlinear function of the masked
weaker signal on the way to the brain. When this occurs, thresholds of the signals presented independently [30].
the weaker signal becomes less audible.

3.5.2 Nonsimultaneous Masking
3.4 Discrimination between Signals Nonsimultaneous masking may occur when the

The excitation patterns of audio signals are processed masker and the maskee are present at different times.
and stored in the brain. Three different kinds of memory Shortly after the decay of a masker, the masked thresh-
are distinguished: echoic memory, short-term memory, old is closer to the simultaneous masking threshold than

8 J. AudioEng. Soc., Vol. 48, No. 1/2, 2000 January/February
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to the absolute threshold. Depending on the duration of experiments have shown that when a new time-
the masker, the decay-time of the threshold can be be- frequency component is added to a signal which has no
tween 5 ms (when the masker is a Gaussian impulse common structure in time or frequency, the auditory
with a duration of less than 0.05 ms) and more than 150 image is decomposed into two different perceptual
ms (when the masker is a pink noise with a duration of events or streams [31], [32]. The idea that additions of
1 s). This effect is called forward masking, time-frequency components are more disturbing than

Weak signals just before stronger signals can be deletionswas first describedin [7]. However, to measure
masked as well. The temporal extent of this backward whether a codec produces slightly annoying or very
masking effect is usually below 5 ms. When the maskee annoying new time-frequency components requires an

is just above the masked threshold, it is not perceived auditory scene analyzer that describes how listeners sep-
as a Signal before the masker but as a change in the arate auditory events and group them into different ob-
masker. The extent of backward masking shows large jects. Such a model of auditory scene analysis is beyond
deviations from listener to listener, the scope of this paper. In ITU-R Recommendation

BS.1387 [13] the effect is modeled in a simplified way
3.6 Loudness and Partial Loudness by treating asymmetrically the disturbances caused by

The perceived loudness of an audio signal depends added and deleted elements. Separating linear and non-
not only on its sound pressure level but also on its dura- linear distortions into separate streams facilitates incor-
tion and its temporal and spectral structure. The partial porating this effect (see Section 5.3.3).
loudness of a signal is the preceived loudness after it Learning is another cognitive phenomenon that plays
has been reduced by a masker [14]. This is important an important role in subjective audio quality assessment.
in perceptual measurement, as partial loudness takes into A small, unfamiliar distortion is much more difficult to
account the reduction in perceived loudness of an audible hear than a small, familiar distortion. This effect is
distortion due to the masker, known as informational masking, where the threshold

of a complex target masked by a complex masker may

4 COGNITIVE MODEL decrease by more than 40 dB after training [33]. Infor-
mational masking has been modeled using an entropy-

The perceptual representation provided by the ear is like spectrotemporal complexity measure [34]. In the
mapped to a cognitive representation that is more diffi- context of perceptual quality estimation, informational

cult to specify. Nevertheless; one can make some reason- masking was modeled with a local complexity measure
able assumptions about the cognitive processes underly- [35]. Accounting for local complexity increased the cor-
ing a quality judgment. For example, if listeners are not relation between subjective and objective quality inca-
familiar with the processed signal, their opinion will be surements for some listening tests, but decreased the
influenced largely by their world knowledge. Although correlation for other listening tests. It is possible that
individuals may disagree about the characteristics of a the training preceding these listening tests reduced the
good piano sound, there is some common understanding informational masking that might otherwise have oc-
of a piano sound. For example, if the waveform is ampli- curred. Since the effect of training was not specifically
tude clipped, all subjects will agree that the audio quality measured in any of the tests conducted according to ITU-
is low. R Recommendation BS. 1116 [16] (see Appendix), it is

Since computer programs typically have little world difficult to model the effects of informational masking
knowledge, computer-based assessments using a model using these data.
of the auditory system need the original signal as a refer- The nature of a distortion with respect to linearity also
ence. However, the problem of insufficient world knowl- influences its perceived prominence. In particular, linear
edge is only partly solved by using a reference. For distortions are typically found to be less objectionable
example, if the original signal has noiselike characteris- than nonlinear distortions. The separation of linear from
tics, and processing is such that the output is aestheti- nonlinear distortions is implemented by adaptive inverse
cally more pleasing than the input, the quality rating filtering of the output signal. The method specified in
might be higher than it would be if the listener based ITU-R Recommendation BS. 1387 [13] and described
the judgment strictly on a comparison between the input further in Section 5.4 uses a short time-averaged approx-
and the output. It is extremely difficult to model this imation of the linear distortion in order to cope with the
aspect of listener behavior without knowledge of the problem of codecs that show a time-varying frequency
ideal audio signal that is in the mind of the listener, response.

Another phenomenon somewhat related to an internal Finally, some regions in the audio signal carry more
ideal or prototype is the involuntary perceptual organiza- information and may therefore be more important than
tion imposed on auditory input. When an audio signal others when assessing distortions. For example, differ-
forming a coherent entity is heard with certain time- ential weighting of spectrotemporal regions was found
frequency components left out, the remaining signal will to be important in quality judgments of speech codecs
still be a coherent entity. However, if an unrelated [36]. In speech some spectrotemporal components, such
time-frequency component is inserted into the signal, as formants, clearly carry more information than others.
the result will appear to consist of two separate signals For quality assessment of music, however, an appropri-
and would likely be judged annoying. Psychoacoustic ate spectrotemporal weighting has not been found.
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5 DESCRIPTION OF PEAQ plications requiring the highest achievable accuracy and
is called the advanced version. Both versions generate

The conclusion by the ITU-R committee that none many of the same types of MOVs, but the advanced
of the existing perceptual measurement methods was version takes advantage of the increased temporal reso-
sufficiently reliable for an international standard led to lution of the filter bank ear model. Fig. 5 shows a sche-
the cooperative development of PEAQ. PEAQ is a new marie of the overall model.
perceptual measurement scheme, jointly developed by The basic version uses 11 MOVs for the final mapping
all parties that were involved in the development of mea- to a quality measure, whereas the advanced version uses
surement methods mentioned in Section 1.2.1, and corn- five MOVs. Nevertheless the fewer MOVs in the ad-

bines features of all these methods, vanced version seem to capture the properties of MOVs
PEAQ includes ear models based on the fast Fourier used only by the basic version. For example, the quality

transform (FFT) as well as on a filter bank. The model predictor variables in the basic version include a detec-
output values are based partly on the masked threshold tion probability and the proportion of frames with audi-
concept and partly on a comparison of internal represen- bin distortions. Both are not explicitly included in the
rations. In addition, it also yields output values based advanced version, and addingthem to the advanced ver-
on a comparison of linear spectra not processed by an sion did not result in a significant improvement in its
ear model. The model outputs the partial loudness of performance. Therefore their properties appear to be suf-
nonlinear distortions, the partial loudness of linear dis- ficiently represented by other variables that are included.
tortions (signal components lost due to an unbalanced
frequency response), a noise to mask ratio, measures of 5.2.1 Basic Version
alterations of temporal envelopes, a measure of harmon- The basic version of PEAQ uses only the FFT-based
its in the error signal, a probability of error detection, ear model, and employs both the concept of comparing
and the proportion of signal frames containing audible internal representations and the concept of masked
distortions, threshold. The restrictions arising from the poor tempo-

Selected output values are mapped to a single quality ral resolution of the FTT-based ear model are partly
indicator by an artificial neural network with one hidden compensated by a higher number of model output vari-
layer [37]. ables and an increased spectral resolution (as compared

to the advanced version). The variables derived from
5.1 Preparation for Analysis the ear model measure the loudness of distortions, the

5.1.1 Setting of Playback Level amount of linear distortions, the relative frequency of
For correct modeling of threshold in quiet and with audible distortions, changes in the temporal envelope,

level-dependent auditory filter slopes, the model must a noise-to-mask ratio, noise detection probability, and
be adjusted to the playback level of the test signal. From harmonic structure in the error signal.
the given sound pressure level LMAx of a full-scale sine
tone, a scaling factor for the input signal is calculated 5.2.2 Advanced Version
such that an amplitude of 1 corresponds to a sound pres- The advanced version of PEAQ uses the FFT-based
sure level of 0 dB. In the test data used, the values of ear model as well as the filter bank based ear model.

LM_x are in the range of 85-100 dB SPL. Therefore The masked threshold concept is applied using the FFT-
when the exact playback level is not known, LMAx should based ear model, whereas the concept of comparing in-
,be set to 92 dB SPL, which also is close to the dynamic ternal representations is applied using the filter bank
range of the 16-bit pulse-code modulated (PCM) format based ear model. The variables derived from the filter
that is normally used for the test data. bank measure the loudness of nonlinear distortions, the

amount of linear distortions, and disruptions of the tern-
5.1,2 Time Alignment poral envelope. The variables based on the FFT include

Time alignment is not an integral part of the perceptual a noise-to-mask ratio and a cepstrum-like measure of
model. The original and processed signals are to be time harmonic structure in the error signal.
aligned before the quality is evaluated by the measure-
ment method. This may be achieved by computing the 5.3 Peripheral Ear Models
cross-correlation function between the temporal envel- 5.3.1 FFT-Based Ear Model
opes of the processed and the original signals. The delay The various processing stages in the FFT-based ear
of one signal relative to the other is given by the position model are shown in Fig. 6. Modeling the ear representa-
of the maximum of the correlation function. Alterna- tion of a complex sound begins by transforming it into
tively, the signals may be aligned visually using special- a spectral representation using a short-term DFT. A
ized software, frame of 2048 audio samples is multiplied by a Hann

window and processed with the FFT. Each frame corres-

5.2 Model Versions ponds to 1024 spectra ! lines and a temporal resolution
The model consists of two versions: one is intended of about 21 ms (when sampled at 48 kHz). The overlap

for applications that require high processing speed (that between successive frames is 50%. Rectification is
is, low computational complexity) and is called the basic achieved by transforming the complex spectrum to signal
version of PEAQ. The other version is intended for ap- amplitude as a function of frequency. The amplitudes
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are adjusted in order to simulate a particular listening to the signal to model the internal noise,
level using a scale factor previously obtained via a cali-

bration process. Then the frequency response of the intern/d noise/dB = 0.4 x 3.64(f/kHz) -°'s (3)

outer and middle ear is applied by multiplying the ampli- wherefrepresents the center frequency of the respective
tude spectrum with a frequency-dependent weighting frequency band. The factors 0.6 in Eq. (1) and 0.4 in
function, Eq. (3) are shown separately to emphasize the effect of

A(f)/dB = -0.6 x 3.64(f/kHz) -°'8 the neural suppression of internal noise on absolutethreshold.

+ 6.5 x e -0"6'(//kHz-3"3)z - 10-3(f/kHz) 4 (1) Psychoacoustic measurements are typically made us-
ing relatively simple stimuli. Therefore determining the

Together with the internal noise added later [see Eq. energy dispersion along the basilar membrane for arbi-
(3)], this function models the absolute threshold (see trary complex sounds using existing psychoacoustic
Section 5.3.2.5). knowledge requires the assumption that a complex sound

is represented as a superposition of simpler sounds.The attenuated spectral amplitude values are trans-
Given this assumption, the calculation of the energyformed to spectral power values and grouped into per-
distribution is carried out in two steps.ceptual bands by mapping to a Bark scale using an ap-

proximation given by Schroeder et al. [2], First the energy of each frequency group is smeared
out over the pitch scale using a filter with a constant

(_) lower slope of 24 dB/Bark and a variable upper slope.
f/kHz = 650 sinh (2) The level and frequency dependency of the upper slope is

derived from an approximation given by Terhardt [38],

The width of the bands on the Bark scale is chosen to slope rate _ _ 24 230 Hz
be 0.25 Bark in the basic version of the measurement dB/Bark _ + 0.2L/dB (4)
model and 0.5 Bark in the advanced version.

At this stage a frequency-dependent offset is added where L is the local energy level and fc is the center

Distortion Index Objective Difference Grade

Fig. 5. Block diagram of measurement scheme.
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frequency of the current analysis band. 5 ms [40], [41 ]. As the time resolution of the FFT-bascd
In the second step a nonlinear superposition of the ear model is about 20 ms, backward masking is not taken

resulting patterns is carried out using a power-law into account.

model. This model, which was originally proposed by The duration of forward masking is much longer and
Lutfi [39], uses a compressive exponential characteristic can be greater than 120 ms. This is modeled via a first-

prior to the addition of the excitation components, order IIR filter that smears out the excitation patterns
over time. The time constant of this low-pass filter de-

(_. )l/ct pends on the center frequency of the corresponding anal-Ek = norm k Ei,k a (5) ysis band (see [5]) and is given by

Following an experimental optimization process, the ex- "r(fcenter)= rn_n + 100H_____zz.(rl0° _ a.mio) (6)
ponent ct was chosen to be 0.4. fcenter

Backward masking experiments show that depending
on the signal characteristics and duration, the rise time The time constants "rn_nand ah00were chosen tObe 8 ms
for the masking threshold ranges from 2 ms to more than and 30 ms, respectively. The filtered output Ef for the

N/

Fig. 6. FFT-based ear model and preprocessing of excitation patterns.
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nth frame and the kth channel is defined as description of the filters has not yet been published. This
part of the ear model shown in Fig. 9 differs from the

Ef[k, n] = aEf[k, n - 1] + (1 - a) E[k, n] FFT-based ear model (Fig. 6) in several ways. Since the
spectral resolution of the ear is already modeled in the

where filters, a grouping into auditory filter bands is not re-
quired. In order to take full advantage of the high tempo-

a = e 4/(lsT'sT) ral resolution of the filter bank, rectification takes place
after the spreading over frequency (the effect of this

and E[k, n] is the unfiltered excitation, will be described later). For reasons of computational
Because the analysis window is quite long, the tempo- efficiency, input scaling occurs earlier, and time-domain

ral resolution needs to be improved in order to process spreading is divided into two different processing steps.
attacks more satisfactorily. This is achieved by replacing Moreover a low-frequency rejection filter is applied in
the filtered value Ef[k, n] with the corresponding until- order to compensate for the filter bank's sensitivity to
teredvalueE[k,n]ifthelatterisgreaterthantheformer, direct current and subsonics. The processing steps re-

5.3.1.1 Characteristics. The spectral and tempo- lated to the noise-to-mask ratio (the left branch in Fig.
ral characteristics of the FFT-based ear model are pre- 6) are not implemented in the filter bank based part of
sented using a sine tone and a white noise burst, respec- the ear model.
tively, as input signals. Fig. 7 shows the excitation 5.3.2.1 Structure of Filter Bank. The filter bank
patterns for a l-kHz sine tone at different levels. The consists of 40 pairs of linear-phase filters, each consist-
position of the maximum corresponds to the frequency ing of one filter representing the real part of the filtered
of the sine tone. The internal noise function is reflected signal and one representing the imaginary part. The band-
by the increase in excitation in the left part of the figure, widths and center frequencies of the filters correspond
The changes in the excitation slopes shown at right are to auditory filter widths, and the filters are defined in
due to the level dependency of the filters.

Fig. 8 demonstrates time-domain smearing using a

white noise burst with a duration of 100 ms. Fig. 8(a) /_ ' --:--- 'r - ' ,

shows the excitation patterns over time and frequency _ii! .... i ' ........ ___i_ - -

before temporal smearing, and Fig. 8(b)shows the exci-40- _!ii_ _ _i _ _-!

tation pattern for the same signal after temporal

smearing. At the onset of the signal there is no difference 80 i!!iiil

in the excitation patterns. Then the effect of temporal 70-
smearing becomes more evident over successive frames. 0o-

50-

5.3.2 Filter Bank Based Ear Model _ ' ' ,,_....,.,::_. 8
24

20- 2 Bark

the advanced version consists of linear-phase filters with 10
bandwidths corresponding to auditory filter widths and 0_ _ r , _ / ,/ / 0
signal-dependent slopes that model the level dependency 107 213 320 427 533 640 747
of basilar membrane excitations. Such a filter bank was Time(ms)
used in the DIX measurement method [5], but a detailed (a)

===============================
_ 60.......... ......... --

504,

4o..............ii ....... :i .....i
20_ ,.;..._._.__.,_._._.__ Bark
10¢ v._-__/_ _____ _ 6

20 (__ / ,,' ,," ,' ,; ,,'/
0 107 213 320 427 533 640 747

0 Time (ms)
102 103 10' (b)

Hz
Fig. 8. Excitation patterns in response to 100-ms white noise

Fig. 7. Excitation patterns for 1-kHz sine tones at different burst. (a) Before temporal smearing. (b) After temporal
levels, smearing.

J. Audio Eng.Soc,, Vol. 48, NO.1/2, 2000 January/February 13



THIEDEETAL. PAPERS

the time domain by impulse responses of the form model, but yields a somewhat different result. Since this
spreading operation is carried out before any nonlinear

2( "tr ) )1 operations (such as rectification) are performed, the rela-Re[a(n)] = sin _ n cos ( 2'rrfcent_r"n (7) tion between spectral and temporal characteristics (im-\ f_amp 0_,<N pulse response) of the filters is preserved. Thus the out-
put signals of the filter bank after this spreading

2(,11. ) )1 operation are identical to the output signals of filters thatIm[a(n)] = sin _ n sin _ 2"trfcentcr•n (8) realize the exponential slopes of auditory filters directly.
\ fsamp 0_n<N This operation y'ields the desired results only when the

phases of the individual filters are equal. As the filters
where f_ot_r denotes the center frequency of the filter, are linear phase, equal phases are achieved easily by

f*_mp is the sampling rate, and N is the length of the delaying each filter output by half the difference between
impulse response and thus defines the bandwidth. An the length of the impulse-response of the current filter
efficient implementation of this filter bank is given in and the length of the impulse response of the filter with
[42]. A weighted summation is carried out among the the lowest bandwidth.
different auditory filter bands to achieve exponential ill- The slope rate of the filters, in decibels per critical

ter slopes in the rolloff of the filters. This uses basically band, is constant for the ascending slope, and is level
the same processing steps as the convolution with a and frequency dependent for the descending slope. The
spreading function that is carried out in the FFT-based level dependency is derived from an approximation

N/

Fig. 9. Filter bank based ear model and preprocessing of excitation patterns.
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given by Terhardt [38] [see Section 5.3.1, Eq. (4)]. In taneous masking is already accounted for in an earlier
order to prevent the filters from losing their bandpass stage of the filter bank, temporal masking has yet to be
characteristic at very high levels, the slope rate is limited modeled by low-pass filtering the signal envelopes after
to a maximum value of - 4 dB/Bark. Since the auditory the rectification. As the temporal resolution of the filter
filter slopes are unlikely to change instantaneously with bank is still extremely high at this stage, there are almost
changes in sound pressure level, the slope rate of the no restrictions for the temporal masking curves to be
level-dependent slope is smoothed in time using a first- modeled. Nevertheless the low-pass filters used to model
order low-pass filter, temporal masking should not be too complex, because

The center frequencies of the filter bands are distrib- this would increase both the computational effort of the
uted according to the approximation of the Bark scale model and the number of degrees of freedom in the
given by Schroeder et al. [2] [see Section 5.3.1, Eq. parameter settings. The low-pass filters consist of two
(2)]. This simplified approximation of the Bark scale stages, a raised cosine shaped FIR filter and a first-order
yielded better predictions of perceived audio quality than IIR lo_v-pass filter. The first filter mainly accounts for
other proposed scales such as the more precise approxi- the ascending slope of the complete filter, and the latter
mation of the Bark scale given in [43], the ERB scale one accounts for the descending slope. The ascending
[44], [45], and the spectral increment scale [46]. One slope models backward masking, and the descending
possible explanation is that the implemented frequency- slope models forward masking. The time constant of the
to-pitch mapping approximates the critical band rate at IIR low-pass filter depends on the center frequency of
lower frequencies, but is closer to the ERB rate at high the corresponding auditory filter and is given by Eq. (6).
frequencies (where Terhardt's approximation of the Bark The length of the FIR low-pass filter is equal for all

scale yields much wider bands), filter bands. This length, as well as the time constants
Adjacent filters overlap at their 6-dB points. For the of the IIR low-pass filter, were subjected to experimental

given filter shapes this results in 40 filters with band- optimization. As a result the FIR low-pass filter has a
widths of 0.6 Bark (which corresponds approximately length of 8 ms, which corresponds to a duration of back-
to the auditory filter width assumed by the ERB scale), ward masking of approximately 2 ms. The time constants

5.3.2.2 Prefiltering. As the filter bank turned out for the IIR low-pass filter are 50 ms at 100 Hz (a'100)and
to be too sensitive to subsonics in some of the test sig- 4 ms at high center frequencies (x=i,).

nals, a de and low-frequency rejection filter is applied 5,3.2.5 Threshold in Quiet. The threshold in quiet
befbre the input signals are fed into the filter bank. A is modeled in two stages. In the first stage the filter
fourth-order Butterworth high-pass filter with a cutoff outputs are weighted by a transfer function that accounts
frequency of 20 Hz is used. The filter is realized as a for the parts of the threshold in quiet that are normally
cascade of two second-order IIR filters, assigned to the outer and middle ear transfer function. In

5.3.2,3 Rectification. Given the fact that a pure a later stage a frequency-dependent offset representing
tone is always perceived as a constant sound event, the internal noise is added to the excitation patterns. Similar
auditory model must translate the excitation caused by to the FFT-based ear model, both parts are derived from
a sine tone into a neural representation with a perfectly the approximation of the threshold in quiet given in [38]
flat temporal envelope. According to physiological mea- [see Section 5.3.1, Eqs. (1) and (3)].
surementsof mechanical to neural transduction mediated 5.3.2.6 Characteristics of the Filter Bank. This

by the inner hair cells of the ear, this is best modeled section illustrates the properties of the filter bank. The
by a half-wave rectification [47]. However, half-wave filters are linear phase, and thus preserve the temporal
rectification requires the use of either low-pass filters of shape of the signals as closely as possible. The spectral
a high order and large time constants, or a peak detection and temporal characteristics of the filter bank are shown
algorithm. Both would increase the complexity of the as input signals for the examples of sine tones and
model, which may not be justified by a corresponding pulses, respectively.
improvement in performance. Moreover such strategies Fig. 10 shows the excitation pattern in response to a
would add several degrees of freedom to the model, 1-kHz sine tone. The position of the maximum excitation
which would make a reliable experimental optimization corresponds to the frequency of the sine tone, whereas
of the complete model more difficult, the excitation in the lowest filter bands is due to the

A more convenient way of rectifying the filter outputs addition of internal noise. The change in the excitation
is to adopt the rectification strategy used in FFT-based pattern following the onset of the tone reflects mainly
approaches. This is done by calculating the Hilbert trans- the temporal resolution of the filter bank and the shape
form of the filter outputs, which represents the imaginary of the low-pass filters that model temporal masking. The
part of the filtered signal, and computing the instanta- front part of the figure gives an impression of the re-
neous energy by adding the squared values of each filter sponse of the filter bank to steady-state signals.
output and its Hilbert transform. Fig. 11 shows the impulse response of the filter bank

The advantages of this approach are the possibility of when no time-domain smearing is applied. The figure
subsampling the filter outputs, and the property that it shows that the temporal resolution is much higher in the
yields perfectly flat temporal envelopes for steady-state upper filter bands than in the lower filter bands. This
signals without a need for large time constants, characteristic is one of the main advantages of filter

5.3.2.4 Time-Domain Smearing. Whereas simul- banks.
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Fig. 12 showsthe impulse responsefor a single filter cnccsbefore processingwith the perceptual model.
band over a linear energy scale before and after the Besides those signal differences that are not 'audible
frequency spreading function is applied. When compar- (or at least not annoying), there are also some audible
ing both plots, it becomes clear that the spectral signal differences which are less annoying than other
smearing that is carried out for the modeling of the expo- kinds of distortions. This holds especially for some lin-

nential auditory filter slopes really preserves the relation ear distortions such as changes in the spectral envelope
between spectral and temporal resolution. It is plain to due to a nonuniform frequency response of the device
see that the reduction of the spectral resolution when under test. Such changes could be slow enough to be
modeling the exponential filter slopes concentrates the perceived as altered coloration rather than distortion.
energy of the impulse responses to a considerably re- Compensation for such linear distortions is achieved
duced time period, by adapting the spectral envelopes of the original and

processed signals to each other. As linear distortions are

5.3.3 Separating Linear and Nonlinear Distortions not completely inaudible, but only less annoying, the
Not all objective differences between the processed excitation patterns both before and after the pattern adap-

signal and the original signal are perceived as errors, ration must be evaluated separately. For this reason the

This holds especially for signal delays and for a constant model splits the internal signal representation into two
amplification or attenuation. A slow change in the ampli- parts, one including linear distortions and one not in-
fication also may not be perceived as an error or, at least, eluding linear distortions. This can be regarded as mod-

is less annoying than additive distortions. Therefore it cling an aspect of perceptual streaming.
is necessary to compensate for delays and level differ- When a pattern adaptation is performed, care must be

taken to prevent the adaptation algorithm from suppress-
ing errors that originate from nonlinear distortions such
as additive noise.

Since the auditory system adapts itself continuously
to the signal characteristics, the adaptation algorithm in
a perceptual model should also process continuously. A
priori knowledge about the total signal should not be
required. For this reason level and pattern adaptations
are performed dynamically on the incoming signal.

The most important point when adapting original and
processed signals to each other is to ensure that the
adaptation is based on signal components that are com-
mon to both signals, and not on components that exist
only in either of the signals. Otherwise the adaptation
may suppress errors that actually should be measured,
or may even introduce errors in regions that actually
were error free. A typical example for the latter case is
given by the following situation. If the processed signal
is band limited, an adaptation of the overall levels ampli-
fies the energy of the processed signal in the passband
of the device under test. This might then be interpreted

Fig. 10. Excitation pattern for 1-kHz sine tone. as additive noise in a frequency region where no errors
are present.

l
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Fig. 12. Envelope of impulse response of tenth band of filter
Fig. 11. Envelope of impulse response of one filter band .with bank before and after spectral smearing (temporal smearing
spectralbut not temporalsmearing, disabled).
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Deciding which components of the processed signal spectral envelopes of the original and processed signals,
belong to the original signal, and vice versa, would the distinction between common signal components and
require a complete model of perceptual streaming. This additive or missing signal components is made in the
would include a detailed model of all signal recognition time domain. The problem is to distinguish, within the
effects as well as "world knowledge" (see Section 4), processed signal, between weighted components of the
which, of course, is not available. However, a simplified original signal and additive distortions. Thus the orthog-
model of perceptual streaming can be established by onality relation is used in the opposite direction from
regarding either the complete original signal or the com- the way it is applied in level adaptation [that is, the
plete processed signal as one auditory event, and assum- processed signal corresponds to B(x) in Eq. (11)]. As
ing that the time-frequency patterns of the remaining the adaptation should be able to change over time, the
auditory events are orthogonal to the time-frequency orthogonality relation given in Eq. (11) is not evaluated
patterns of the original event. Orthogonality is defined for the full signal length, but for a moving time window.
by the relation After smoothing the correction factors over time and

frequency, the level-adapted input patterns are weighted

=_A(x) dx with the corresponding correction factors in order toe(x) 0 (9)
= obtain the spectrally adapted patterns.

where x can be either the time or the frequency variable. 5.4 Calculation of Features
If the signal B(x) consists of a fraction of the signal A(x) Since the basilar membrane representation produced
and the part e(x) that is orthogonal to A(x), by the model is expected to carry only audible aspects

of the signal, this information should be sufficient to

B(x) = m. A(x) + e(x) (10) simulate results of subjective quality tests. However,
quality judgments may also be influenced by the percep-

the weighting of the part of A(x) included in B(x) is tual salience of audible degradations, which may vary
givenby dependingon a numberof contextualfactors.Therefore

the peripheral ear model outputs are processed further

f_A(x), in various ways according to reasonable assumptionsB(x) dx
® about human auditory cognition. The quality measure-

m = f® (11) ment is obtained from the resulting set of features via a-® [A(x)] 2dx multilayer neural network that was trained to approxi-d

mate the-subjective quality ratings for a set of audio
This is similar to the calculation of a cross-correlation sequences. The feature calculations and the mapping
coefficient, but differs in that the orthogonality relation process implemented by the neural network constitute a
is not symmetrical. Therefore one must choose whether task-specific model of auditory cognition.
it is more appropriate to look for components of the The following subsections describe the features that

original signal that are present in the processed signal, were used to predict the quality of an audio sequence.
or to look for components of the processed signal that
are present in the original signal. This choice depends 5.4.1 Envelope Modulation
on the character of the expected differences between When the temporal envelopes "at the auditory filters
original and processed signals, are taken into account, many effects of auditory percep-

Further the adaptation should not make signal compo- tion can be modeled in a more logical way than when
nents audible that originally were inaudible. To prevent modeled purely in the frequency domain. The structure
this, the adaptation process should never amplify signal of the temporal envelopes is taken into account by a
components, but only attenuate them. Therefore the modulation measure that is calculated from the temporal
stronger signal, which may be either the original or the derivative of the signal envelopes at each filter channel.
processed version, is always adapted to the weaker From the excitation patterns obtained prior to the tern-
signal, poral smearing,a simplifiedloudnessis calculatedby

5.3.3.1 Level Adaptation. When adapting the mo- raising the excitation to a power of 0.3. These values,
mentary signal levels of the original and processed sig- namely, E'(f, t), and the absolute values of their tempo-
nals to each other, the most likely source of error is a ral derivative are smeared out over time, using the same
band limitation in the processed signal. In this case the filter as in the modeling of forward masking,
adaptation factor should be determined only by the en-

ergy ratio of the signal components that are within the f t IdE,(f,t,)le(t,_o/,(Ddt '
passband of the device under test. This factor can be EA(f, t) = (12)

t = dtobtained from the orthogonality relation when the origi- '= -
nal signal is divided into a part that is preserved in the
processed signal and another part that is not preserved and
in the processed signal [that is, the processed signal

corresponds to A(x) in Eq. (11)1. /_(f, t) = E'(f, t') e(''-¢)/'(/) dt' (13)
5.3.3.2 Pattern Adaptation. When adapting the ,= _®
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The time constants are also in the same range as in the Previous approaches for the calculation of partial
modeling of forward masking. From the resulting values loudness were based on the results of simple psycho-
Ea and/_, the modulation measure is calculated by nor- acoustic experiments. In contrast, the partial loudness
malizing the temporal derivative of the envelope by its calculation used here is designed to yield a consistent
magnitude, transitionbetweena model for auditoryperceptionnear

threshold and the loudness of the signals in the absence
EA(f, t) of a masker. The partial loudness was to satisfy the

mud(f, t) = 1 + (1/ci)/_(f, t) " (14) following criteria.

The modulation measure mud(f, t) is used primarily • In the absence of a masker or in situations where the
to determine the threshold factor (see Section 5.4.3). level of the distortion is far above the masker level,

Together with the simplified loudness E(f, t), it is also the partial loudness should converge to the well-
used to calculate a separate measure of changes in the established loudness calculation proposed in [28].
envelope modulation (see Section 5.4.2). ° Near masked threshold it should be possible to map

the partial loudness to a detection probability. It can
5.4.2 Modulation Difference be shown that this is approximately fulfilled when the

The modulation measure is used to derive a very sim- specific partial loudness converges to the ratio between
pie measure of changes in the temporal envelopes. The distortion and masker. This ratio is the basis for the
local modulation difference measure is the absolute dif- main output variables of most established perceptual
ference between the local modulation measures of the measurement methods. Therefore the relation between

original and processed signals, normalized by the local partial loudness near threshold and detection probabil-
modulation measure of the original signal, ity can be considered as confirmed by practical experi-

ence.

Imo_(f, t) - modo,ig(f, t)l ° The threshold factor should be calculated from the
moddiff(f, t) = w

offset + modorig(f, t) (15) characteristics of the temporal envelopes of original
(masker) and processed signals (masker plus maskee).

The linear average and the rms of the local modulation It might thus be necessary to split the threshold factor
measures give the total modulation measure over time. in Zwicker's loudness formula [14] into two parts, one
A small offset is added to the denominator of Eq. (15) depending on the properties of the masker alone and
to limit the value of the modulation difference in the one depending on the properties of masker and

case where the original signal is not modulated at all. maskee together.
In order to take into account that introduced modulations

are more annoying than modulations left out, a An expression that fulfills that requirements is given by
the equation

(--k 1 .E_ 1 + - 1 (16)N'
\Sp_ Eo ] Ethos +

where the proc and orig denote the processed and the
weighting factor w is applied, which depends on whether original signals, respectively. It depends on three free

the processed signal is more or less strongly modulated parameters, the factor et, which determines the amount
than the original signal, of partial masking, and the two coefficients used in the

The weights for the left out modulation components linear mapping from modulation measure to threshold
are 0.1 and 1.0, and the offsets are 0.01 and 1.0 for factor. This mapping is expressed as
the FFT-based ear model and the filter bank based ear

model, respectively, sp_ = m s • mo_(f, t) + cs
(17)

5.4.3 Partial Noise Loudness So_ig= ms" modo,ig(f, t) + cs
The most important attribute of a distortion is its per-

ceived loudness. In the higher quality range addressed where m s is on the order of 0.2 s and c_ is on the order
by the measurement method, the distortion is normally of 1.0. All other constants either are pure scaling con-
close to the masked threshold, and is therefore partially stants (like E0 and k) or are already determined (like the
masked by the original signal. A reliable method for the exponent % which, according to [28], is set to 0.23).
calculation of the partial loudness of complex sounds The partial loudness measure is calculated from the
should thus be a good starting point for a perceptual excitation patterns obtained after the pattern adaptation.
measurement method. However, neither the approach In this case it measures the impact of additive nonlinear

given in [2] nor the method proposed recently in [44] distortions, and is called partial loudness of additive
yields results that are significantly correlated with sub- distortions.
jectively perceived quality. Some distortions might be missed because the partial
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loudnessmeasure defined in Eq. (16) will not respond ratio of at least one analysis band exceeds a value of
to differences between processed and original signals 1.5 dB.
when both modulation and excitation decrease. In this

case the distortions can be measured by interchanging Negative values of the total noise-to-mask ratio or
the roles of processed and original signals in Eq. (16). the segment noise-to-mask ratio give an estimate of the
The partial noise loudness derived for this case is called distance below the threshold of audibility, and positive
partial loudness of missing components. As this measure values give an estimate of the audible error energy. The
does essentially the same thing as the partial loudness of relative number of distorted frames gives an estimate of
additive distortions, the mapping, to basic audio quality the likelihood that a frame contains an audible distortion.
-should, except for a weighting factor, be the same for
both measures. Thus they are combined into one single 5.4.6 Signal Bandwidth
quality measure by a weighted summation, where miss- Audio codecs often limit the bandwidth of the coded

ing components are given half the weight of additive signals in order to reduce the number of bits necessary
distortions, for transmission.In manycases such a truncationalters

the perceived timbre and signals sound dull or muffled.

5.4.4 Audible Linear Distortion To measure this effect, a rough estimate of the signal
A measure for linear distortions is derived by modi- bandwidth is computed. This is achieved for each frame

fying the algorithm described earlier for the calculation by first obtaining the maximum of the spectrum in the
of partial loudness to yield the partial loudness of the frequency range from 21.5 to 24 kHz. This is used as

components of the original signal which are lost in the an estimate of the noise floor. Then the position of the
processed signal. This is achieved by applying the algo- last frequency line where the energy exceeds the noise
rithm described in Section 5.4.3 to the excitation pat- floor by at least 10 dB defines the estimated bandwidth
terns of the original signal before and after the pattern for the frame. The mean value over frames is calculated
adaptation. The excitation pattern before the adaptation independently for the original and processed signals to
is used in place of the processed signal, and the excita- obtain an overall measure of bandwidth.
tion pattern after the adaptation is used in place of the
original signal. 5.4.7 Detection Probability

The detection threshold and the probability of detec-
5.4.5 Noise-to-Mask Ratio tion of differences between the original and processed

If noise loudness is computed strictly according to signals depends on the absolute level of the signals. In
psychoacoustic rules, then everything that is not audible principle the signal with the higher level defines the
results in zero loudness, and no information is obtained reference level. For synthetic signals the detection
about the local and global margins of audible noise, threshold for an increase in the level is the same as the

However, based on the masked threshold concept de- threshold for a decrease in the level of a signal. For
scribed in Section 2.1, the noise-to-mask ratio can give natural signals such as speech or music, a decrease in
an estimate of the distance between the actual distortion level is less perceptible than an increase [19]. PEAQ
and the maximum inaudible distortion. The noise-to- uses a weighted average of both input signals to calculate
mask ratio of each analysis band is defined as the ratio the reference level for band k at frame n, that is,
between error energy and masked threshold. The linear

average of the noise-to-mask ratios over the analysis L[k, n] = 0.3 max(Eo,g[k, n], E_[k, n]) + 0.7/_[k, n]
bandsrepresentsthe local noise-to-maskratio of one (18)
frame. The masked threshold is estimated by lowering

the excitation patterns of the original signal by a where E refers to the excitation pattern expressed in
frequency-dependent function, decibels. The level L[k, n] is used to estimate the just

The error signal is calculated in the frequency domain noticeable level difference (JNLD) s(k, n) according to
by mapping the absolute difference of the spectral ampli- [14]. The shape of the probability function varies de-
tudes of the original and Processed signals to the analysis pending on the sign of the difference signal. If the level
bands. In contrast to the calculation of the error signal in band k of frame n is decreased, the transition range
in the time domain, this method has the advantage of from "no audible difference" to "difference clearly audi-
being more robust against phase errors and small delays ble" is broader than in the opposite case [19]. In any
between original and processed signals. Three different case the detection probability of 0.5 is reached at a level
parameters are derived using the noise-to-mask ratio difference equal to the JNLD. For each band and frame

feature: of a binauralsignal,the channelwiththe highestdetec-
tion probability is selected for further processing. The

• The total noise-to-mask ratio, which is the arithmetic detection probabilities of all bands in each frame are
mean of the local noise-to-mask ratio combined to obtain the detection probability for the

• The segmental noise-to-mask ratio, which is the geo- frame.

metric mean of the local noise-to-mask ratio The total probability of detection is obtained by
• The relative number of distorted frames, which is the smoothing the local detection probabilities over time and

relative number of frames where the noise-to-mask finding the maximum of these smoothed values. The
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smoothing is necessary to avoid giving undue weight to mum values in the training data. The training set
extremely brief errors, while the maximum operation consisted of all available data, excluding the generaliza-
models the cognitive effect that the worst distortion tion sets identified before. Weight adaptation was per-
dominates the perceived quality. The result is the maxi- formed using an accelerated form of the back-
mum filtered probability of detection, propagation learning algorithm [48].

A measure for the severity of distortions is obtained An important concern when training a neural network
by weighting the difference between the input signals is to ensure that overfitting does not occur. When the
with the detection threshold s(k, n). For each band, when training error is reduced too much, idiosyncratic varia-
the signal is binaural, the channel with the larger normal- tions in the training data may begin to have undue influ-
ized error is selected. The normalized error of each band ence, and generalization to a new data set usually suf-
is reduced to the next smaller integer. This prevents a fers. The success of any procedure to minimize
large number of inaudible distortions from having the overfitting should be verified using new test data that
same effect on the final result as a few large distortions, were never evaluated in any way during the training
The normalized errors of all bands are added to obtain process.

the so-called steps above threshold of the actual frame. An accepted practical method for detecting overfitting
The steps above threshold of all frames are summed isto test periodically during training with a cross-

and divided by the number of frames having a probabil- validation test set. Training is typically stopped at the
ity of detection above 0.5. The logarithm of this value point where the generalization error with the cross-
gives the average distorted block measure, validation test set reaches a minimum.

The training procedure used cross-validation test sets
5.4.8 Error Harmonic Structure drawn from the same distribution as the sets used to

A signal containing strong harmonics has a spectrum train the networks. The set of 610 available audio se-

characterized by a number of regularly spaced peaks quences was divided into five equivalent subsets in terms
separated by deep valleys. Under some conditions the of the severity of perceived distortions. All items were

error signal may inherit that structure. For example, sorted according to the mean subjective quality rating
noise mixed with a signal containing harmonics is more and then divided into subsets by selecting every fifth
likely to remain unmasked where the signal is low in item of the sorted sequence, each subset starting at a
the spectral valleys. The result is an error spectrum with different offset from the beginning. Five different train-

a structure similar to the signal spectrum but offset in ing and cross-validation test sets were then created by
frequency to correspond to the locations of the valleys, choosing each subset as a cross-validation test set and
This type of distortion may have a tonal quality that combining the remaining subsets to form a training set.
increases its perceptibility. The concept of testing with a cross-validation test set

The harmonic structure is measured with a cepstrum- was applied in training both model versions, but details
like analysis. The autocorrelation of the error energy in of the methods differed somewhat due to the division of
decibels is calculated, and the harmonic structure magni- labor among the authors.

tude is identified as the largest peak in the spectrum of To train the basic version network with its 11 input
the autocorrelation function. This value is averaged over variables, a reliable stopping criterion was estimated
successive frames, from preliminary tests with thetraining set subsets. Each

training set and related cross-validation test set was used
5.5 Model Calibration to train a different network. Training was stopped when

The function relating the output variables described test set performance began to deteriorate, and the critical
in Section 5.4 to listener quality ratings was calibrated training set error at this point was recorded. The average
using the mean SDG data from listening tests (Appendix) critical training error over the five networks became the
conducted according to ITU-R Recommendation stopping criterion for training a new network with the

BS.1116 [16]. The objective quality variable is called complete set of training data. The generalization per-
the objective difference grade (ODG), merely to show formance of this network was assessed using the data
its correspondence with the subjective difference grade from the DB3 and CRC97 listening tests.
(SDG). Thirty-two items from DB3 and all 136 items Since the advanced version of the model has only five

from CRC97, a recent experiment that compared state- output variables that were carefully selected with respect
of-the-art codecs [26], were set aside to evaluate the to the prediction of audio quality, it was assumed that
generalization performance of the calibrated model. The overfitting would be minimal with a sufficiently large
main features of these experiments are also described in training set, even after extensive training. Thus the net-
the Appendix. workwastrainedfora fixednumberofiterationsthrough

The output variables of the model are mapped to a the training set (approximately 10 times as many as was
prediction of the SDG via a multilayer neural network necessary for the error to begin to level off). Then the
[37] with either three (basic version) or five (advanced network was tested with a separate cross-validation test
version) units in a single hidden layer. Outputs of the set. The combination of model variables that resulted
hidden and output layers are generated using the asym- in the best cross-validation test set performance was
metric sigmoid activation function. Input and output val- considered robust against overfitting. This set of vari-
ues are scaled from 0 to 1 using the minimum and maxi- ables was used to train a final network with the full data
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set, and the network was assessed further with the data quality items than for high-quality items in order to have
from the DB3 and CRC97 listening tests, an effect on the average.

6 VALIDATION AND PERFORMANCE 6.1.2 Correlation
The correlation coefficient is often used to express the

The cross-validation test sets used in the training of strength of the linear relationship of one variable with
the neural networks guarded against overtraining, another. Further, the squared correlation coefficient is
Nevertheless they were still involved in the training pro- a measure of the variance in one variable accounted for
cess and therefore do not provide a true test of general- by the variance in the other. Since a linear relationship
ization performance. The ability of the final networks is expected between SDG and ODG variables, the corre-
to generalize to a truly independent data set was evalu- lation coefficient should be a useful criterion for compar-
ated by using the 32 hidden items in the DB3 database ing model performance. However, it should be recog-
and the 136 items in the CRC97 database (Appendix). nized that the magnitude of the correlation can be

affected drastically by the presence of only a few ex-
6.1 Perfomance Criteria treme outliers, so this criterion should not be used in

In order to compare the performance of different rood- isolation.
els or model versions, a number of different criteria may
be relevant. The relative importance of these criteria 6,1.3 Absolute Error Score
may be affected by practical as well as statistical consid- The absolute error score (AES) was introduced to re-

erations. For example, if two model versions yield iden- late the accuracy of a model to the accuracy of the lis-
tical correlations between subjective and objective qual- tening test. It is defined by the expression
ity measurements, but one has many small outliers

whereas the other has fewer but more severe outliers, i--_./ ( _2which version is best? Is it better if a version is conserva- AES = 2 1 s- ' ODG(n) - SDG(n) (19)

tire overall, or should more deviations with severely

distorted signals be allowed than with almost transparent where CI is the confidence interval for the subjective
signals? Does a difference of 0.3 grade have the same test results.

significance near the lower end of the quality scale as A model that on average produces ODG values within
near the upper end? To facilitate comparisons of the the range of the SDG confidence interval will have an
model versions, several performance criteria were de- AES value somewhere between 0.0 and 2.0.

fined and evaluated. These are explained in detail in the A possible problem with the AES variable is that it
following subsections, relies heavily on the confidence intervals. Although this

is intended and seems fine from a statistical point of
6.1.1 Tolerance Scheme view, it works only if the confidence intervals are con-

A to!erance scheme was designed to weight differently sistent with our requirement, that is, they should in-
the deviations of the ODGs from the SDGs at the upper crease monotonically as subjective quality decreases so
and lower ends of the impairment scale. A tolerance that larger errors will be given less weight as quality
range was defined that is related to the confidence inter- decreases. Unfortunately the confidence intervals in the
vals of the listening tests, and the minimum was limited subjective tests were not a monotonic function of subjec-
to 0.25 grade. The average distance from the ODGs tive quality. Rather, confidence intervals tended to be
outside the tolerance region to the region boundary was smaller at the ends of the quality scale than in the middle.

one criterion for evaluating the measurement method. As a result, the AES gave too much weight to items at
As shown in Fig. 13, errors need to be larger for lower the ends of the scale due to their smaller confidence

intervals. Another problem was discovered in the results
OOG -4 -3 -2 -1 0 for DB3 in that one single item heavily influenced the

AES score. This showed that the AES variable may give
useful hints, but it also should not be used in isolation

to measure overall performance.
-1

6.1.4 Number of Outliers

The number-of-outliers criterion is based on the prem-
-2 ise that any prediction error exceeding a certain limit is

as severe as any other, independent of the size of the
error. This measure is defined by simply counting all
occurrences of a prediction error, defined as an error-3
larger than the SDG confidence interval. In addition sev-
eral indicators for the number of severe outliers were

,- evaluated by counting how often the error exceeds either
-4 so6 twice the confidence interval or a fixed value of 1.0,

Fig. 13. Tolerance region (confidence interval CI I> 0.25). 1.5, or 2.0 grades on the five-grade impairment scale.
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Another variation of this criterion takes the view that

predictions should overestimate rather than underesti-

mate the severity of distortions. This is accomplished ODG - Advanced Version
by using asymmetric limits for the allowed error margin. -4 -3 -2 -1 0
Although there is some similarity between this measure

and the tolerance scheme mentioned, the meaning is . ,__ ._:

completely different. The tolerance scheme quantifies , ._,_,_,_._# 0how much the algorithm fails, whereas the number of

outliers shows how often the algorithm fails. . ,____"-'_. -1

6.2 Performance and Validation . _ _:"

Figs. 14-16 indicate a rather clear ranking between "r_>° _ "
both versions of PEAQ and the reference model when .. "_ -2 _ta

considering DB3 (the solid lines represent the tolerance " z- _t" o
range for the test items). The advanced version of PEAQ /.

. -_ -3
is clearly superior to the reference model judging from f

o f

the number of points outside the tolerance region as well ,_
as their average distance. The rest of the performance -4
criteria described corroborated this conclusion. The be-

Fig. 14. Results for DB3 using the advanced version of PEAQ.sic version appears superior to the reference model as
well, although the difference is somewhat less obvious.

The improved performance of PEAQ compared to the

reference model is more obvious for the CRC97 general- ODG - Basic Version
ization test set (Figs. 17-19). For this database there -4 -3 -2 -1 0
appears to be no significant difference between the basic

version and the advanced version of PEAQ. However, .*/

both are clearly superior to the reference model. _*,_.)! 0Fig. 20 shows the relation between subjective quality

and the signal-to-noise ratio (SNR) for all available • _i-
items containing coding errors. As indicated in the Intro- • _ _ -1

duction, the SNR is clearly not a viable measure of . . _ °4
quality for such items. (Note that a few of the very low _ "_ 0
SNRs are due to inaudible effects such as a one- or two- _'-'-- _ .I _ -2 ta

sample offset between original and processed files, a

180 ° phase shift in the processed file, or a slight loss of -3
synchr°nizati°n between the two files due to insertion ._
or deletion of samples.) Figs. 21 and 22 show the corres- • o

ponding PEAQ model predictions for both versions, and _ *
these are muchmore accurate.However,the variance -4
observed in these graphs indicates that one should not Fig. 15. Results for DB3 using basic version of PEAQ.
expect a perfect prediction for any single item. In prec-

. tice, the measured quality of an audio device is consider-

ably more reliable when it is based on the average pre- ODG - Reference Model
dieted quality of a number of different audio items -4 -3 -2 -1 0
processed by the device [49].

A new perceptual measurement method called PEAQ .,_ _ _..
is presented that forms the ITU-R standard method for _ "- _t -1
objective measurements of perceived audio quality _:x ._. _ *
(BS. 1387). PEAQ was jointly developed by several re- --- _ _ _' _ O
search institutions, combining concepts and output vari- _ j * -2 ta
ables of most previously known measurement methods * (" •

_ * o

of this nature. It includes measures of nonlinear distor-
• -3

tions, linear distortions, harmonic structure, distance to
masked threshold, and changes in modulation. These <
variables are mapped by a neural network to a single
measureofaudio•quality. -4

PEAQ includes a basic version and an advanced ver- Fig. 16. Results for DB3 using reference model.
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Fig. 17. Results for CRC97 database using advanced version -4
of PEAQ. Fig. 20. Relation between SDG andSNR for individual items.
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• -4 Fig. 21. Model predictions of reduced quality due to coding
errors versus listening test results for all databases (ad-

Fig. 18. Results for CRC97 database using basic version of ranted version).
PEAQ.
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errors versus listening test results for all databases (basic

Fig. 19. Results for CRC97 database using reference model, version).
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sion of the model. The basic version is designed for pp. 115-123 (1994 Mar.).
high computational efficiency and is therefore based on [8] B. Paillard, P. Mabilleau, S. Morissette, and J.
a purely FFT-based ear model. The advanced version is Soumagne, "PERCEVAL: Perceptual Evaluation of the
designed for maximum accuracy using a filter bank Quality of Audio Signals," J. Audio Eng. Soc., vol. 40,
based ear model for the calculation of some model output pp. 21 - 31 (1992 Jan./Feb.).
variables and an FFT-based ear model to compute [9] M. P. Hollier, D. R. Guard, and M. O. J. Hawks-
other variables, ford, "Objective Perceptual Analysis: Comparing the

An ITU-R committee, with the mandate to identify Audible Performance of Data Reduction Schemes," pre-
and recommend a method for the objective measurement sented at the 96th Convention of the Audio Engineering
of perceived audio quality, performed validation tests Society, J. Audio Eng. Soc. (Abstracts), vol. 45, p. 394
to evaluate the versions of the model. The tests showed (1994 May), preprint 3797.
that the advanced version of PEAQ predicts the per- [10] S. Wang, A. Sekey, and A. Gersho, "An Objec-
ceived audio quality with somewhat higher accuracy tive Measure for Predicting Subjective Quality of Speech
than the basic version, and that both versions are superior Coders," IEEE J. Selected Areas Commun., vol. 10,
to previously existing measurement methods, pp. 819-829 (1992).
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APPENDIX each pass. Each channel of the stereo pair was coded
DESCRIPTION OF TRAINING AND TEST independently.
DATABASES Results. At least 96% of the mean SDG per item

was above -2.0, and the range was 0.22 to -2.41.
The databases consist of audio files from different

listening tests and the corresponding subjective ratings Data Set Name: ITU93 [52]
averaged across observers. The audio contents, experi- Content. Seven stereo sequences: German male
mental conditions, and results of the tests are briefly speech, solo castanets, Asa Jinder, bass clarinet arpeg-
summarized, gio, solo harpsichordarpeggio,"Vi salde varahemman"

(solo violin), bagpipes.
Data Set Name: MPEGD0 [50] Conditions. Processed by ISO layer II tandem code

Content. Ten stereo sequences: Suzanne Vega, configurations (bit rate given for stereo pair): emission
Tracy Chapman, glockenspiel, fireworks, Ornette Cole- codec alone at 256 kbit/s (independent channel coding),
man, bass synth, castanets, male speech, bass guitar, emission codec alone at 192kbiUs (joint stereo coding),
trumpet (Haydn). eight contribution codecs at 360 kbit/s followed by one

Conditions. Processed by two codecs (Musicam, emission codec at 256 kbit/s, eight contribution codecs
ADPCM) at three bit rates (64, 96, and 128 kbit/s/ at 360 kbit/s followed by one emission codec at 192
channel), kbit/s, five contribution codecs at 360 kbit/s followed by

Results. SDGs covered the range from 0.01 to three distribution codecs at 240 kbit/s and one emission
- 3.98. codec at 256 kbit/s, five contribution codecs at 360 kbit/

s followed by three distribution codecs at 240 kbit/s and
Data Set Name: MPEG91 [511 one emission codec at 192 kbit/s.

Content. Ten stereo sequences: SuzanneVega, Car- Results. Listening tests were performed by CRC
men, male speech, Ornette Coleman, accordion/trian- (Canada) and RAI (Italy). Most of the mean SDG per
gle, tambourine, bass guitar, glockenspiel, percussion, item was above -2.0, and the range was -0.08 to
George Duke. - 2.27. There was no significantdifferencebetween the

Conditions. Processed by six codecs (MPEG layer data from the two labs.
I, MPEG layer II, MPEG layer III, MUSICAM, ASPEC,
NICAM) at three bit rates (64, 96, and 128 kbit/s/ Data Set Name: EIA95 [53]
channel). Content. Nine stereo sequences: bass clarinet arpeg-

Results. At least 88% of the mean SDG per item gio, Dire Straits cut, glockenspiel, harpsichord arpeg-
was above - 2.0, and the range was 0.09 to - 3.75. gio, music and rain, Pearl Jam cut, muted trumpet, Su-

zanne Vega with breaking glass, water sound.
Data Set Name: ITU92DI [52] Conditions. Processed by nine codecs (Eureka 147

Content. Twelve stereo sequences: Asa Jinder, Da- #1, Eureak 147 #2, AT&T/Lucent, AT&T/LucenU
lamas Spelmarsforbund Trettondagsmarchen, Wind Oc- Amati # 1, AT&T/Lucent/Amati #2, VOA/JPL,
tat (Stravinsky), triangels, solo harpsichord, castanets, USADR-FM #1, USADR°FM #2, USADR-AM) at bit
German male speech, Ornette Coleman, bass guitar, Su- rates ranging from 96 to 224 kbit/s/2 channels.
zanne Vega, "Feria" (Spanish Suite) (Ravel), "Ride Results. At least 93% of the mean SDG per item
across the River" (Dive Straits). was above -2.0, and the range was 0.14 to -3.73.

Conditions. Processed by five distribution codecs
(ISO layer 2, ISO layer 3, Dolby AC-2, Aware, NHK) Data Set Name: DB2
at 120 kbit/s/channel. Each item was processedby the Content. The database consisted of 91 items made
same codec three times in tandem, with a 0.1-dB drop from 18 stereo sequences: bass clarinet, clarinet, clarinet

in level before each pass. Each channel of the stereo + horn, horns, horn, strings, oboe, oboe + string
pair was coded independently, bass, castanets, trumpet, tambourine, triangle, drum,

Results. 80% of the mean SDG per item was above glockenspiel, xylophone, tuba, female speech, Su-
-2.0, and the range was 0.13 to -3.43. zanne Vega.

Conditions. Distortions produced by processing
Data Set Name: ITU92CO [52] with five codecs (layer 2, layer 3, MPEG2/L2, AC2,

Content. Ten stereo sequences: Asa Jinder, Dalar- APT-X) alone and in tandem at bit rates of 64 to 384
has Spelmarsforbund Trettondagsmarchen, Wind Octet kbit/s/2 channels, and by adding quantizing distortions,
(Stravinsky), Triangles, solo harpsichord, castanets, analog distortions, digital errors, and clipping.
German male speech, Ornette Coleman, bass guitar, Su- Results. At least 83% of the items was given a mean
zanne Vega.. SDG above -2.0, and the range was 0.0 to -3.98.

Conditions. Processed by six contribution codecs

(ISO layer 2, ISO layer 3, Dolby AC-2, Dolby Low- Data Set Name: DB3
Delay, Aware, ATT DSQ 5TR620) at 180 kbit/s/chan- Content. The database consisted of 84 items made
nel. Each item was processed by the same codec three from 27 stereo sequences: flute, clarinet, saxophone,
times in tandem, with a 0.1-dB drop in level before trumpet, tuba, claves, castanets, snare drum, kettle

26 d. Audio Eng.Soc., Voi. 48, No. 1/2, 2000 January/February



PAPERS OBJECTIVEMEASUREMENTOFPERCEIVEDAUDIOQUALITY

drum, Mangle, glockenspiel,xylophone, harpsichord x Data Set Name: CRC97 [26]
2, English & German female speech, English & German Content. The database consisted of 136 items made
male speech, piano, soprano, pitch pipe, marimba, bag- from eight stereo sequences: bass clarinet, double bass,
pipe, tambourine, strings, Suzanne Vega, Ry Cooder. Dire Straits, harpsichord, music and rain, pitch pipe,

Conditions. Distortions produced by processing trumpet, SuzanneVega.
with six codecs (MD, layer 2, layer 3, AC2, AC3, AAC) Conditions. Processed by six codecs (ATT PAC,
alone and in tandem at bit rates from 128 to 256 kbit/s/2 Dolby AC3, layer II (hardware), layer II (software),

channels, and by adding quantizing distortions, THD, layer III, AAC) at bit rates per stereo pair from 64 to
and additive noise. 192 kbit/s.

Results. At least 80% of the items was given a mean Results. The mean SDG per item quite uniformly
SDG above -2.0, and the range was 0.27 to -3.84. covered the range from 0.13 to -3.60.
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