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1. Introduction

The need for reliable automatic estimates of the voice fundamental frequency has
engaged as many creative minds as any topic in speech analysis. Reports on the algo-
rithms and systems resulting from these efforts comprise a rich literature spanning
several generations. The reader is referred to [1, 2] for a comprehensive historical
summary and bibliography. It is not possible in a single book chapter to review all
of the significant work in this area. Here, we will provide a sketch of human speech
production mechanisms; define the problem; provide a very abbreviated survey of
pitch-tracking techniques; and then then focus on a complete description of a ro-
bust algorithm for pitch tracking, RAPT, that has proven effective in the context
of basic research and synthesis engineering.

1.1. What is pitch?

Strictly speaking, the term piich should be reserved for the auditory percept of
tone. This can be measured, for instance, by asking a listener to-compare alternate
presentations of a complex (multi-component) signal, the pitch of which is to be
estimated, with a pure sinusoid of variable frequency. When the listener has adjusted
the sinusoid so that it seems to be the same tone as the complex stimulus, the
sinusoid frequency could be defined to be the pitch of the complex signal. Although
some computational auditory models are successful at predicting the perceived pitch
of certain complex signals, pitch is not directly measurable from the signal and is
a nonlinear function of the signal’s spectral and temporal energy distribution.

Fundamental frequency (F0) is the quantity that is being estimated by virtually
all “pitch trackers”. FO is an inherent property of periodic signals, and tends to
correlate well with perceived pitch. For the purposes of this chapter it is defined as
the inverse of the smallest irue period in the interval being analyzed. This definition
provides for the short-time variation in F0 that is observable in human speech. As
will be seen later, determination of “true” is the crux of the matter!

1.2. A glimpse at speech production

In order to understand the nature of the F0 estimation problem it is helpful to
review quickly some of the human speech producing physiology and state some
simplifying assumptions. See [3] and [4] for thorough coverage. The glottis is the
opening in the larynx that is adjustable by the vocal folds (“vocal cords” in the ver-
nacular). Muscles and cartilage in the larynx provide several dimensions of adjust-
ment of the folds, including the degree of their V-shaped opening, their longitudinal
tension, and the stiffness of their bulk. These adjustments are under more-or-less
voluntary control. When the folds are adjusted appropriately and when airflow from
the lungs via the trachea is of sufficient velocity, the folds self-oscillate. Note that
although, to first order, the tensions and geometric configuration established by
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the laryngeal muscular adjustments do not change in the course of a single cycle of
fold vibration, adjustments of pulmonary effort and of laryngeal configuration are
the primary determiners of the amplitude and rate of vocal-fold vibration on time
scales corresponding to phone and word production.

As the folds oscillate, they vary the degree of glottal opening, which in turn
modulates the volume of air passing through the glottis. It is this periodic airflow
modulation that serves as the excitation for the vocal tract during voiced speech.
Laryngeal and pulmonary adjustments also permit some voluntary control of voice
quality. For instance, if the folds are pressed more forcefully together, they are
more thoroughly closed during a longer fraction of the cycle and tend to open
more abruptly. This tends to reduce the amplitude of the first harmonic and boost
the amplitudes of higher harmonics in the resulting pressed voice speech signal.
An increase in pulmonary pressure tends to cause higher amplitude oscillations
and thus, more abrupt stoppage of the airflow as the folds slam together at the
beginning of the closed gloitis interval of the cycle. This, in turn, leads to a speech
signal with overall higher amplitude and also differentially increases the spectral
energy at higher frequencies. A decrease in pulmonary effort and/or a widening of
the glottal opening leads to breathy voice associated with incomplete or soft glottal
closure and manifested as speech having a relatively large aperiodic component and
most of the spectral energy concentrated in the first few harmonics [5, 6].

The airflow through the glottis or the glottal volume velocity, U(t), is the forcing
function that ultimately determines the periodicity of voiced speech. Stylized ver-
sions of U(t) and its derivative UU’(¢) are shown in fig. 1. Also shown are estimates of
the corresponding functions obtained by auto-regressive (linear prediction) inverse
filtering of natural speech. The shape of the “normal” U(t) waveform is explained
as follows: When the vocal folds close, they close completely, and U is zero. The
folds open due to the combined effect of sub-glottal air pressure and the stored
energy in the fold’s mechanical system. U rises very gradually because the folds
open gradually and, perhaps more importantly, because of the inductance of the
tracheal and superglottal system which prevents instantaneous acceleration of the
air column. At some point, the mechanical restoring force in the folds causes them
to begin to close. However, the inductance now tends to keep the air flowing. As the
folds approximate, the Bernoulli force becomes significant, further accelerating the
closure, and injecting some energy into the mechanical system. Finally, the folds
slam shut and the cycle is complete. It is this rapid closure and the resultant dis-
continuity in the airflow derivatives that is the primary point of excitation during
a normal glottal cycle. This closure instant is referred to as the epoch. It can be
seen that the normal U(t) will have a power spectral density S(f) asymptotically
proportional to 1/f2. Since the approximate effect of radiation at the mouth is that
of a differentiator, the spectrum of the far-field pressure signal, U’(t), decreases as
1/f.

The detailed geometry of the vocal folds is somewhat speaker-specific. Addi-
tionally, the mechanical properties of the mucous membrane covering the folds are
subject to wide variation depending on the speaker’s health and ambient conditions.
Factors such as these, coupled with the types of voluntary controls mentioned above,
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lead to great variety in the shape of U(t). The vocal folds are bathed in mucus which
gets somewhat redistributed with each succeding vibratory cycle. In addition, the
two folds comprising the glottis are semi-independent mechanical oscillators, and
as such, can exhibit varying degrees of chaotic behavior [7]. The net result is often
significant cycle-to-cycle variation in the period and shape of U(t). Successful F0O
estimators must cope with this variation.
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Figure 1. Glottal flow and its first derivative during normal voicing. The horizontal axes display
time in seconds. From top to bottom, the signals shown here are synthesized glottal flow U(t);
its first derivative, U'(t); a segment of natural speech during production of the phone /a/; glottal
flow estimated from the natural speech by inverse filtering; and the derivative of the estimated

natural flow.

Unvoiced speech is produced when the airflow is forced through a vocal-tract
constriction with sufficient velocity to generate significant turbulence. The long-
term spectrum of turbulent airflow tends to be a weak function of frequency and is
usually approximated by Gaussian noise. Constrictions can occur at several places
along the vocal tract from the glottis to the lips. Some speech sounds are produced
by complete stoppage of airflow followed by a sudden release, producing an impul-
sive excitation often followed by a more protracted turbulent excitation. In general,
unvoiced speech exhibits little or no periodicity, though occasionally the vocal-tract
filtering yields unvoiced signals with considerable periodicity at the resonant fre-
quencies. Some speech sounds are produced by introducing super-glottal vocal-tract
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constrictions while voicing is in progress producing mized excitation. Additionally,
extremely breathy speech may derive most of its excitation energy from turbulent
noise, rather than periodic glottal flow modulation.

1.3. What’s the problem?

FO estimators must cope with mixed excitation. For some applications they must
determine the presence or absence of glottis-induced periodicity. The latter deter-
mination 1s referred to as the voicing classification. Given the nature of the speech
signal, it should now be clear that a whole range of excitation types from “purely
voiced” to “purely unvoiced” is possible. However, in this chapter we make the sim-
plifying assumption that only the two extremes exist. While this is patently false,
it turns out to offer considerable utility. Many successful speech analysis/synthesis
systems are based on this simplifying assumption. RAPT estimates the FO and the
voicing state simultaneously as suggested by Secrest and Doddington [8, 9].

It may be helpful at this point to summarize phenomena observed in natural
speech that make FO difficult to estimate and voicing state difficult to classify.

— FO changes with time, often with each glottal period.

— Sub-harmonics of FO often appear that are sub-multiples of the “true” F0.

— In many cases when strong sub-harmonics are present, the most reasonable ob-
jective FO estimate is clearly at odds with the auditory percept.

— Vocal-tract resonances and transmission-channel filtering can emphasize harmon-
ics other than the first, causing F0 estimates that are multiples of the true F0.

— Occasionally F0 actually does jump up or down by an octave!

~ Voicing is often very irregular at voice onset and offset leading to minimal wave-
shape similarity in adjacent periods.

— Panels of expert humans do not agree completely on the locations of voice onset
and offset.

— Narrow-band filtering of unvoiced excitation by certain vocal-tract configurations
can lead to signals with significant apparent periodicity.

— The amplitude of voiced speech has a wide dynamic range from low in voiced
stop consonant closures to high in open vowels.

— It is difficult to distinguish periodic background noise from breathy voiced speech.

— Some voiced speech intervals are only a few glottal cycles in extent.

It follows that considerable temporal context may be required to determine the
voicing state and, if voiced, the F0O in human speech. Furthermore, there is no hope
of ever inventing an all-purpose algorithm that is correct 100% of the time!

1.4. Whither pitch tracking?

Although some waveform coding techniques require no explicit knowledge of either
FO or the voicing state, many linear-prediction analysis-by-synthesis speech coders
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gain in quality and reduced bit rate through pitch determination [10, 11]. Narrow-
band coding techniques still benefit significantly from the “vocoder” model, where
the type of excitation is chosen on the basis of voicing determination and the
estimated F0. Furthermore, knowing the excitation type permits changes in the
coding paradigm that offer further economies in bit rate [12]. Although the FO
estimator described below has a delay that would tend to disqualify it from use
in common telephony, it is suitable for specialized coders that can tolerate delays
on the order of 50 ms and for “off line” analysis situations, such as preparation
of speech segment inventories for concatenative text-to-speech systems, compact
storage of educational speech material or archival storage of voice mail.

Concatenative speech synthesizers that use a source-filter model for parameter
storage, such as that described in chapter 17, require the best possible separation
of the excitation source from the vocal-tract filter. A clean separation along these
lines during analysis permits increased flexibility in changing FO and voice quality
during resynthesis, where the segmental FO and voice quality adjustments can be
substantially different from those in the source utterances for the concatenated
elements. By weighting consistently the closed-glottis interval of each period more
heavily than the open glottis interval, the acoustic contributions due to the details
of airflow through the glottis and the variations in vocal-tract resonant frequencies
and bandwidths due to the glottal leakage are reduced. This differential weighting
can be achieved consistently if the time locations of the glottal epochs are known
[13]. Consistent positioning of the analysis window relative to the epochs also allows
the use of smaller windows, resulting in less smoothing of the time-varying vocal-
tract filter estimates. This results in more clearly articulated synthesis.

As automatic speech recognizers are incorporated into speech understanding sys-
tems, analysis of utterance prosody will become increasingly important for detecting
emphasis and disambiguating meaning [14-17]. Since F0 variation is an important
component of prosodic implementation, reliable F0 determination will be required
in thse systems. Basic and applied studies of speech prosody currently under way
already demand reliable estimates of FO over large corpora of speech data [18].

Speech processing aids for the hearing impaired often translate the voicing state
and FO into the tactile or visual sense domains, or recode it for presentation in
cochlear implants. Transformations of the F0 and voicing information into an al-
ternate auditory signal [19] or into the tactile domain [20-22] show considerable
promise as communication aids for the hearing impaired.

2. Approaches to FO estimation

FO estimators often have three major components: i) A pre-processing, or signal-
conditioning stage, i1) a generator of candidate estimates for the true period sought
and 1) a “post-processing” stage that selects the best candidate and refines the
FO estimate. In this section, some commonly used approaches to these operations
are outlined.
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2.1. Pre-processing

The choice of pre-processing depends to some extent on the nature of the candidate
generator that is to follow. The aim of pre-processing is to remove interfering signal
components, such as extraneous noise, vocal-tract filter influences, DC offset, ete.
and to transform the signal to better match the expectations of later stages.

It has been suggested that low-pass filtering improves F0 estimation performance
because it removes an apparent loss of periodicity in the voiced speech spectrum at
higher frequencies [1]. While this aperiodicity is certainly observable in the short-
time spectrum, it is due to an undetermined mix of two effects: ¢) averaging periods
of different length within the spectral analysis window, and ii) a predominance
of random over “periodic” excitation in those spectral regions. Of course, if the
candidate generation stage is also averaged over several periods, then the low-pass
filtering will have a beneficial (or at least non-harmful) effect regardless of the ex-
planation for the periodicity loss at high frequencies. Since RAPT does not average
over several periods, low-pass filtering is unnecessary. Since bandwidth reduction in
general tends to increase inter-sample correlation, it can have a detrimental effect in
systems which rely on correlation values as an indicator of periodicity (and hence,
of voicing state).

Non-linear operations on the speech signal such as cubing and center/peak clip-
ping have been shown to have the effect of flattening the spectrum of the signal
passed to the candidate generator [23, 24]. This has the effect of increasing the
distinctiveness of the true period peaks in autocorrelation functions, as described
below. However, it also has the effect of destroying some information that may lead
to better estimates of period length in candidate generators that do not average
over more than one period.

Auto-regressive (linear predictor) inverse filtering has also been suggested as a
pre-processing step to flatten the signal spectrum [25, 9, 26]. When the aim is
to detect glottal epochs, inverse filtering is extremely beneficial [27-29, 13]. In
other contexts its benefits are less clear and it has been found to degrade the
voiced/unvoiced decision and F0 estimation in some cases. When the speech signal
is rich in harmonics of F0, inverse filtering has the beneficial effect of removing the
contamination by the vocal-tract resonances. However, when only a few harmonics
are present, for instance in voiced obstruents, breathy speech, or falsetto, inverse
filtering can remove all traces of the F0 one is trying to estimate!

Most candidate generators described below are impaired by the presence of sig-
nificant DC or very-low-frequency components in the speech signal. Thus, some
form of high-pass filtering is recommended for systems designed to be maximally
robust. Of course, it is desirable (but not essential for many candidate generators)
for the filter to pass all voice harmonics including the first.
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2.2. Period candidate generating functions

Period candidate generators attempt to capitalize on the following characteristics
of voiced speech:

— The glottal period usually varies by only a small percentage from one period to
the next.

— The vocal tract filter varies slowly in comparison with the glottal inter-pulse
interval. Hence, adjacent periods of the speech signal tend to have similar shapes.

(Note the distinction between the determination of glottal pulse location which is
phase sensitive, and period determination which is not.)

2.2.1. Direct waveform processors

The speech waveform and various linear and nonlinear filterings of it have been
subjected to peak/valley detectors and inter-period similarity detectors. These al-
gorithms estimate the period by searching for similarity in the pattern of gross
speech waveform features from one period to the next. The algorithm described in
[30] is probably the most widely used example of this. This algorithm performs well
in high SNR conditions and is of low computational complexity. It i1s capable also
of detecting local period variations, since it does not integrate the final estimate
over more than a single period. Where computational resources are at a premium,
this algorithm is a good choice.

2.2.2. Autocorrelation

The autocorrelation function (ACF) of the speech signal, or of a pre-processed ver-
sion of it, is a traditional source of period candidates [31]. Given s,, p=0,1,2,...,
a sampled speech signal with sampling interval 7' = 1/F, analysis frame interval
t, and analysis window size w, at each frame we advance z = /T samples with
n = w/T samples in the autocorrelation window. w is chosen to be at least twice
the longest expected glottal period; s is assumed to be zero outside the window.
t 1s sized to sample adequately the time course of changes in FO. The ACF of K
samples length, K < n, may then be defined as

min—k—1
Rig= Y sisigr, k=0,K—1,m=izi=0,M-1, (2.1)
j=m

where 7 is the frame index for M frames, and k is the lag index or lag. As outhined in
[24], several linear and linear operations have been applied to the speech signal with
the aim of flattening its spectrum and thus causing R to more closely approximate a
sequence of impulses with significant amplitude only at the “true” period multiples.
Another outcome of pre-processing can be to reduce the computational cost by very
coarsely quantizing the speech signal [32].
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While autocorrelation has performed well in many contexts and is relatively noise
immune, it has two flaws that reduce its utility as a period candidate generator.
The chief disadvantage is the relatively large time window over which the auto-
correlation must be computed in order to cover adequately FO ranges encountered
in human speech. This precludes resolution of cycle-to-cycle variation in shorter
periods. Rapid F0 changes can result in the loss of a clear peak in R at any “true”
period. A second difficulty is that the statistical significance (noise immunity) of the
peak estimates vary as a function of the lag index, k, since the summation interval
shrinks as k increases. Thus, in order to maintain significance at the longest lags
(lowest F0), the window is excessively large at the shorter lags.

2.2.8. Cepstrum

Related to the ACF is the cepstrum as described originally in [33] and applied to
FO estimation in [34]. The cepstrum is defined as the inverse Fourier transform of
the short-time log magnitude spectrum. Given sm, 1, z, and n as defined above, the
short-time log-magnitude spectrum computed as,

n—1
Sip = 1OgHZsr+me_j2”p/”||, p=0,n—1 m=1iz 1= 0,M—1,

r=0

(2.2)

has maxima at values of p corresponding to integer multiples of nF0/Fy, provided
the signal shows periodicity in the window of length n. The cepstrum ¢,k for frame
i and lag k (or quefrency k, to use the terminology of Bogart, et al) may then be
computed as

n—1
1 ji2rrkfn
Cik = ;nZS,-,eﬂ kny. (2.3)

r=0

The cepstrum tends to have local maxima at times, k7T, corresponding to integer
multiples of the glottal period. The log operator on the speech magnitude spectrum
tends to flatten the harmonic peaks in the spectrum and thus lead to the more
distinct period peaks in the cepstrum. Unfortunately, the interval of speech over
which the spectrum, and hence the cepstrum, must be computed is the same as that
required for the ACF, and thus, the cepstrum shares the disadvantages of the ACF.
Tn other respects, it seems to have similar usefulness as a candidate generator.

2.2.). Cross-correlation
Some of the shortcomings in the ACF are overcome by using the cross-correlation
function (CCF), x. Here, w can be chosen to be on the order of a single average
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glottal period. With s, M, K, i, and n as defined above, x, is defined as

m+4n—1
Xik = D Sisjar, k=0,K—1;m=izi=0M-1 (2.4)

ji=m

Thus, the correlation interval w can be chosen independently of the interval being
searched for period candidates. Note that there are no theoretical bounds on the
value of x, and in fact, x; 1 for & = 0 may be smaller than for some other value of k,
unlike R; g which always has its largest value for & = 0. Thus, when s is changing
rapidly in amplitude, normalizing x; r by xio is not sufficient to permit reliable
candidate choices using simple threshold logic.

2.2.5. AMDF
When computational cost was more of an issue and it was common that vector
differences could be computed significantly faster than dot products, the comb
filter or average magnitude difference function (AMDF) was of interest [35, 36]. It
is included here primarily for its historical value, though there may still be some
contexts where 1ts computational characteristics could pay off.

Given s,w, M, K, 1, and n as defined above, the AMDF, D, is defined as

m+4n—-1
D) = Z ls; = sjaxl, k=0, K—1;m=4zi=0M—1. (2.5)

j=m

The near-zero minima in D become the period candidates for the post-processing
stage. Again, the window size w need only be on the order of an average glottal
period, and can remain constant over all values of £. If the amplitude s is changing
rapidly, then the local minimum in D at the “true” period can be significantly
above zero, making correct period determination especially difficult. Nonetheless,
the AMDTF has been used extensively and is, in fact, the candidate generator in the
U.S. Government standard LPC-10 vocoder [37].

2.2.6. Normalized cross-correlation

The RAPT algorithm to be described in section 3 is based on the normalized cross-
correlation function (NCCF) [38]. The NCCF overcomes all of the shortcomings
of the other candidate generators described above at a slight increase in compu-
tational complexity. Let s, be a non-zero sampled speech signal with zero mean,
and let w, M, K, and n be as defined above. Once again, w 1s chosen to be in the
neighborhood of the expected FO period. The NCCF, ¢; ; at lag k and analysis
frame 7 1s

Em_+n_18'8'+k
ciEm O k=0,K-1Lm=izi=0,M-1, (2.6)
ememtk

bl

bi k=
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where
e; = s7. (2.7)

Note that —1.0 < ¢ < 1.0. ¢, ; tends to be close to 1.0 for lags corresponding to
integer multiples of the “true” period, regardless of rapid changes in the amplitude
of s, provided that the shapes of successive periods are similar. The correlation
interval w may be chosen independently of the full FO range under consideration.
For s,, that is white noise, ¢; 9 = 1.0 and ¢&; 1 approaches zero for k # 0 as w
increases. For practical values of w it is still true that the NCCF of noise at all
non-zero lags has a magnitude considerably less than 1. These properties of the
NCCF are independent of the amplitude of s.

We can represent ¢, graphically by assigning lag to the ordinate, frame index
(or time) to the abscissa, and the value of ¢ at the corresponding time and lag to
the degree of shading, with dark shading representing high values (close to 1.0) and
white representing low values (close to -1.0). These graphical representations are
referred to as correllograms.

100§

198.6 198.65 T08.7 198.75 1988 19885 TO8.0 198.95

Figure 2. Speech signal and correllogram of the utterance fragment “in San [Diego]” produced
by a male talker. The horizontal axis is time in seconds; the vertical is lag number in samples
(F. = 8kI7z). Correlation values close to 1.0 are the darkest; those close to -1.0, the lightest. Note
the generally low non-zero-lag correlation values in the /s/ region around 198.75 sec. Voiced regions
exhibit dark horizontal striations corresponding to peaks in the NCCF at lags that are multiples
of the fundamental period. In this fragment, the “true” period corresponds to the striation near
lag 65. Between the times of 198.625 and 198.7 the correlation peak at twice the correct period is
stronger and more consistent than the “true” peak.

An utterance containing clear and problematic voiced speech segments and an
o =]
unvoiced segment is shown in fig. 2. The only local evidence for the true period is
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the location and height of maxima in the NCCF at each frame. The only hope for
choosing the correct peak candidate in the vicinity of 198.65 sec. in this utterance is
to consider the candidate peaks in a large temporal context. Note that; in general,
the NCCF of voiced speech has maxima with comparable amplitudes at lag intervals
corresponding to integer multiples of the fundamental period while the NCCF of
unvoiced speech has its most prominent maximum at zero lag.

2.8. Post-processing

Many post-processing techniques have been developed to cope with the difficulties
summarized In section 1.3. Of course, the most primitive of these is simply the
selection of the “most likely” period candidate, basing the decision solely on time-
local evidence, such as peak or valley amplitude.

More evolved techniques include various heuristics that examine the current F0
hypotheses in relation to past FO estimates. In some cases, the frequency interval
searched for FO is restricted to the neighborhood of past “reliable” estimates.

A straightforward and often successful post-processing strategy is the use of me-
dian smoothing [39]. This has the desirable property of ignoring isolated outliers
while preserving both the fine-grained variations in FO and the sharpness of true
step transitions.

Among the most successful techniques is dynamic programming (DP). Probably
the earliest use of DP in F0 estimation was reported in [40]. Later, it was clearly
outlined in [41, 42] how DP can be applied to the joint problem of estimating and
smoothing speech parameters, including F0. Secrest & Doddington [8, 9] described
the use of DP to integrate the voicing decision with F0 estimation and convincingly
demonstrated improved performance on both.

Sufficiently precise estimation of F0 from a sampled speech signal may require
refinement of the period estimate after a “final” candidate selection has been per-
formed. This may be done by effectively increasing the sampling rate of the gen-
erating function in the vicinity of the peak, and then relocating the peak at the
higher sample rate through band-limited interpolation [26]. Alternately, a polyno-
mial fit to the coarsely-sampled generating function in the vicinity of the peak can
be evaluated to determine the point of zero first derivative, thus yielding the virtual
peak location with high precision.

3. RAPT

The primary aim in the development of the FO estimator described here was to
obtain the most robust and accurate estimates possible, with little thought to com-
putational complexity, memory requirements or inherent processing delay. How-
ever, 1t will be seen that several efficiency enhancements have been incorporated
that significantly reduce computational cost while maintaining the desired accu-
racy. Although the delay inherent in RAPT probably disqualifies if from use in
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standard telephony, it does operate continuously and can be used anywhere a delay
of a few tens of milliseconds can be tolerated. RAPT is designed to work at any
sampling frequency and frame rate over a wide range of possible F0, speaker and
noise conditions. Parameter adjustments permit adaptation of the algorithm for
speed /accuracy tradeoffs and to match peculiar voice or recording conditions.

The following characteristics of typical speech signals and of their NCCFs are
exploited in the algorithm:

— The local maximum in ¢ corresponding to the “true” FO for voiced speech (ex-
cepting the maximum at zero lag) is usually the largest and is close to 1.0.

— When multiple maxima in ¢ exist and have values close to 1.0, the maximum
corresponding to the shortest period is usually the correct choice.

— True ¢ maxima in temporally adjacent analysis frames are located usually at
comparable lags, since F0 is a slowly-varying function of time.

— The “true” FO occasionally changes abruptly by doubling or halving.

— Voicing tends to change states with low frequency.

— The largest non-zero-lag maximum in ¢ for unvoiced speech is usually consider-
ably less than 1.0.

— The short-time spectra of voiced and unvoiced speech frames are usually quite
different.

— Amplitude tends to increase at the onset of voicing and to decrease at offset.

3.1. Algorithm outhne

Here is an overview of the steps that constitute RAPT:

— Provide two versions of the sampled speech data; one at the original sample rate;
another at a significantly reduced rate. '

— Periodically compute the NCCF of the low sample rate signal for all lags in the F0
range of interest. Record the locations of local maxima in this first-pass NCCF.

— Compute the NCCF of the high sample-rate signal only in the vicinity of promis-
ing peaks found in the first pass. Search again for local maxima in this refined
NCCF to obtain improved peak location and amplitude estimates.

— Each peak retained from the high-resolution NCCF generates a candidate FO
for that frame. At each frame the hypothesis that the frame is unvoiced is also
advanced.

— Dynamic programming is used to select the set of NCCF peaks or unvoiced
hypotheses across all frames that best match the characteristics mentioned above.

Though inspired by and similar to the “Integrated Pitch Tracker” [9], RAPT
differs in several details. Significant differences are:

— The NCCF is computed on the speech signal, rather than the LPC residual.

— Two stages of NCCF are used to reduce the overall computational load. This
is similar in some respects to SIFT, but uses peak interpolation at the original
sample rate for increased accuracy.
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— The documentation included below is intended to provide sufficient detail to
reproduce exactly the results obtained using the “get_f0” program in the waves+
software package from Entropic Research Laboratory, Inc.

For convenience, all symbols and constants relevant to the algorithm description
are defined here. The numerical values of the constants provided here were deter-
mined by hill climbing using a hand-marked speech database composed of several

adult male and female talkers.

Constant Meaning Value
FOin minimum F0 to search for (Hz) 50
FOmag maximum F0 to search for (Hz) 500

t analysis frame step size (sec) .01

w correlation window size (sec) .0075
CAND_TR  minimum acceptable peak value in NCCF .3
LAGWT linear lag taper factor for NCCF .3
FREQ-WT cost factor for FO change .02
VTRAN_C fixed voicing-state transition cost .005
VTR_AC delta amplitude modulated transition cost .5
VTR.S.C delta spectrum modulated transition cost .5
VO_BIAS bias to encourage voiced hypotheses 0.0
DOUBL_C  cost of exact FO doubling or halving 35
A_FACT term to decrease ¢ of weak signals 10000
N_CANDS max. number of hypotheses at each frame 20
Symbol Meaning

T m!? sample of the input speech signal

Fs sample rate of speech signal = 1/7

Fys reduced sample rate of speech for first-pass NCCF
round(v) the integer that is closest to v

n the number of samples correlated at each lag = round(wFy)
z the frame step size in samples = round(tF;)

7 the analysis frame index incrementing at a rate of 1/7'z
K the longest lag at each frame = round(Fs/FOmipn)

normalized cross-correlation for frame ¢ at lag k
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3.2. Preprocessing

The algorithm described here does not require, inherently, any special preprocessing
of the input speech signal, and it performs well on speech sampled at any typical
audio sampling rate (6 kHz < F, < 44 kHz). However, the cost of computation
grows roughly linearly with Fyg, so in some cases it may be economical to down-
sample the speech in preparation. Where the background noise in the signals to be
processed has a significant periodic component, attempts should be made to remove
the periodicity. While FO estimation is only weakly affected by modest levels of
periodic noise, the voicing-state determination can be strongly affected. Possible
approaches include using an inverse filter trained on the periodic noise, or a comb
filter tuned to cancel the (fixed) harmonic spectrum of the noise (e.g. 50/60 Hz
line-induced hum/buzz). In extreme cases of periodic noise in the background, the
reliability of the voicing determination can be improved through the use of center
clipping, possibly combined with the addition of white noise at a level sufficient to
mask the background periodicity, but several dB below the typical voiced-speech
amplitude.

3.3. Two-pass NCCF

The NCCF described in section 2.2.6 is the source for period candidates. Its com-
putation is the dominant cost in the algorithm. One device for reducing the com-
putation is to limit the range of F0 values searched. However, a general-purpose F0
estimator should search at least the range, 50 < F'0 < 500.

Since both n and K grow as F}, the cost of the NCCF grows as F,%. This is dealt
with using a two-pass procedure that has a computational cost roughly proportional
to F. In the first pass, the input signal is resampled at a lower rate, Fi,, determined
by

Iy
round(Fy/(4F Opmag))

Fys = (3.1)

The low-pass filter applied before decimation is a symmetric FIR obtained by trun-
cating the impulse response of an ideal Fiy; /2 low-pass filter with a 5 ms duration
Hanning window. The NCCF of the down-sampled signal is computed at all lags,
ky Fas/FOmar < k < K. The maximum value of ¢ in this range, ¢max, is noted.
All local maxima in ¢ that exceed (CAND_TR X ¢pmaqs) are marked. More precise
estimates of correlation peak location and amplitude at F; are then obtained us-
ing parabolic interpolation on the three samples of ¢ defining each peak at Fy,. If
the number of these peaks exceeds (N_.CANDS — 1), they are sorted by decreasing
amplitude, and the top (N.CANDS — 1) are saved.

In the second pass, ¢ is computed using the original speech signal at F, but
only for seven lags in the vicinity of each refined peak estimate kept from the first
pass. A new ¢mg, 1s also found. ¢ is assumed zero at those lags not computed. All
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peaks in this higher resolution ¢ exceeding (CAND_TR X ¢4z ) are marked. In both
passes (CAND_TR X ¢y45) 1s used as the peak screening level, rather than simply
CAND_TR to provide some normalization of possibly reduced peak value due to
additive noise in a truly voiced signal. Again, if the number of maxima exceeds
(N.CANDS — 1), they are sorted and only the top (N.CANDS — 1) are kept. The
higher resolution peaks are not further refined using parabolic interpolation at this
time.

3.4. Notes on computing the NCCF

If the speech signal has non-zero mean in the correlation window w, or if there is very
low frequency noise present, ¢ from eq. (2.6) can yield high correlation at all lags in
the range searched for F0. This is especially troublesome when “silent” intervals, or
low-amplitude unvoiced intervals are to be classified as voiced or unvoiced largely on
the basis of the amplitude of ¢. The solution to this used in RAPT is to subtract the
local mean in each reference window from all samples involved in the computation
at each frame. The NCCF is then computed on this modified signal segment. If
Tm, m=1z,1z+ 1,72+ 2,...is the non-zero-mean input signal for frame ¢, then
the signal, s; ;, to be passed to the correlator at frame 7 is

Sij = Tmij — pi, m=1z; j=0,n+ K —1, (3.2)

where

pi =

S| =

m+n—1
> oz (3.3)
j=m

At first glance it may appear that the energy normalization term in the denomi-
nator of eq. (2.6) would double the number of arithmetic operations for the NCCF
as compared to the CCF. However, note that e,, is only computed once for all
lags at a given frame and that e, 4+ can be modified incrementally by subtracting
S,zn+k_1 and adding 5,2n+k+n_1 at each lag. Thus, the increase in computational
cost of the NCCF over the CCF is minimal. However, the precision required for
this incremental adjustment of e,y is considerable, since the magnitude of the
increments and of the sum of squares can differ greatly. To cope with this, double-
precision arithmetic should be used for e+ and it should be limited to values
greater than some positive minimum (e.g. 1) to cope with numerical imprecision.

Analysis frames which contain no energy in the correlation reference window or
which have no local maxima for some other reason, yield no period candidates. In
these cases, the highest value of ¢ reported for the frame is zero and the frame is
classified as unvoiced.

The signal in “silent” regions of even carefully digitized speech material often
contains a significant periodic component. In these cases, if ¢ is computed as in
eq. (2.6), high correlations may be observed that can lead to an incorrect voicing
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decision. Thus, it is useful to incorporate some knowledge of absolute signal level.
In the second-pass NCCF, we do this through an additive constant, A_FACT, in
the denominator term of ¢. The modified NCCF at lag £ and frame ¢ is now defined
as

n_l . . ..
Z]‘:o 81,5 51,5+k

ik = ) 34
bk VATACT + eger (3-4)
where
j+n-1
ej = Z 52-2’,, (3.5)
I=5

and s;; is defined in eq. (3.2). The first-pass NCCF uses the same formula, but
without A_FACT, and k ranges from round(Fys/FOpmqe) to K — 1.

3.5. Post-processing with dynamic programming

Dynamic programming [43, 44] is now applied to select the best F0 and voicing state
candidates at each frame based on a combination of local and contextual evidence.
Although the entire utterance is available for this optimization, the solution typi-
cally converges in a few tens of milliseconds. For more background on the approach
described below, the reader is referred to [41, 42].

Let I; be the number of states proposed at frame 7, which is one plus the number
of non-zero-lag local maxima selected from ¢ at frame 7 ( 1 < I; < N_.CANDS ).
Thus, at each frame, I; — 1 possible fundamental frequencies (voiced states) and
one unvoiced state will be proposed. Also, let C;; be the value of the j* local
maximum in ¢ at frame ¢. These are the retained peak values from the second-pass
NCCEF. Finally, let L; ; be the sample lag at which C; ; was observed.

We may now define an objective function as the local cost for proposing that
frame ¢ is voiced with period 1'L; ; as

dij=1-C;;(1—BLi;), 1<j < I (3.6)
while the cost for the single unvoiced hypothesis at frame ¢ is

d; 1, = VO_BIAS + max(C; ;) (3.7)
J

8 =LAG WT/(Fs/F0p;). LAG.WT permits adjustment of the degree to which
correlations at longer lags are devalued so as to encourage the selection of shorter
periods. This local cost function favors C; ; close to 1.0 and shorter lags for voiced
frames, and Cj ; close to zero for unvoiced frames. The bias term VO_BIAS permits
adjustment of the likelihood of a voiced decision.
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The inter-frame F0 transition cost é at frame ¢z when hypotheses j and k at the
current and previous frames are both voiced is defined as

5i,j,k - FREQ_WT X min{Ej,k, (DOUBL_C + Igj,k - 1n(2.0)[)}, (3.8)
where
L;; .
fj,k:|ln——’|, 1<j<i; 1<k< (39)
Li_y

)

and DOUBL_C is a positive constant. This makes the transition cost an increasing
function of inter-frame proportional frequency change, but allows octave jumps at
some specifiable cost. FREQ-WT 1s a positive constant that adjusts the cost of
inter-frame FO changes. DOUBL.C adjusts the cost of an exact octave increase or
decrease in FO0.

When the current and previous frames are both proposed as unvoiced:

biqipi_, = 0. (3.10)
The inter-frame transition cost applied when the voicing states proposed for the

previous and current frames differ is computed as
voiced-to-unvoiced:

(sl'yjiyk = VIRAN_C + (VTR_S_C)SZ + (VTR_A_C)T'TZ', 1<k <I;_q;
(3.11)
unvoiced-to-voiced:
8 ;. 1._, = VIRAN_C + (VIR.S.C)S; + VIRAC/rr, 1<j <1,
(3.12)

where VIRAN_C, VITR.S_C and VTR_A_C are positive constants, .S; is a spectral

stationarity function, and

rms(i, h)
= 3.13
" rms(i — 1,—h) ( )
is the RMS ratio across the proposed voicing boundary.
(W;s
rms(i, h) = \/ZJ 0 ) ,m=1iz (3.14)

W is a Hanning window of length J = .03 F}; z is the frame step; h is an offset that
adjusts the window centers for the current and previous rms measurements to be
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20 ms apart, regardless of the frame step size, z. If the speech signal amplitude is
increasing, rr > 1, if it is decreasing, 0 < rr < 1.
S 1s an inverse function of the Itakura distortion [45] measured across the pro-
posed voicing boundary.
0.2

Si= itakura(i,i—1)—0.8’ (3.15)

where the spectral distortion, stakura(i,i—1), is computed using Hanning windows
sized and positioned as above for the RMS ratio. The order of the LPC analysis, O

1s chosen according to
O = 2+ round(F,/1000); (3.16)

the signal is preemphasized using a 1st-order filter coefficient of e=7°0%/F¢. and the
autocorrelation LPC method is used on the speech signal sampled at F;.

These voicing-state transition costs decrease when the signal spectrum is chang-
ing rapidly as it does across voicing class boundaries, and when the signal am-
plitude change is in accord with expectations at voice onset (rising) and offset
(falling). VIRAN_C provides a fixed penalty for voicing state change, regardless of
the changes in the speech signal, to encourage estimation behavior in line with the
general observation that speech changes voicing state relatively infrequently.

We may now define the recursion for the optimal objective function for frame ¢
as

Dij =dij+ min {Diyp+6ijx}, 1<< T (3.17)

with the initial conditions
Do; =0, 1<3<1y; Iy=2. (3.18)
For each state at each frame we save the “back pointers”

Gi,j = kmin, (3.19)

where ki, at each frame are the indices, k£, which minimize D; ;, so that the
optimal state sequence can be retrieved. Back pointers from each state at frame 7
may be traced backwards until they converge to a common, globally optimal state
at frame ¢ — {, where [t is the latency of the decision. In practice, this latency for
the FO estimate is rarely greater than 100 ms. Thus, it is feasible to implement F0
estimators using this algorithm that can operate continuously, in real time, with
modest delay. The coarse F0 estimate for the frame is

(3.20)
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where the values of j are those which result in the global minimum value for D. This
estimate is refined finally using a parabolic fit to the three points in ¢ comprising
the peak. The point where the first derivative of the fit is zero is taken as the
“true” peak. When Fj is only a few times F'0p,qz, or where extreme precision in the
0 estimates is required, it may be advisable to interpolate using a low-pass filter
sampled at a rate high enough to yield the required precision [26].

The algorithm described above has been used with satisfactory results on speech
recordings varying in quality from noisy telephone to quiet laboratory conditions.
A C-language implementation on a MIPS R3000 based UNIX workstation runs
continuously in less than half real time on speech sampled at 8kHz with a frame
rate of 100 Hz. Thus, “real-time” systems, such as modest delay vocoders and
speech parameter displays for speech training can be built around this F0 estimator.
The algorithm has been embedded in a commercially available speech-processing
package and is in widespread use in speech research laboratories.

4. Discussion and summary

This chapter has provided a definition of the “pitch tracking” problem, and through
the complete description of RAPT, an operational definition of the voice fundamen-
tal frequency, FO, which is a strong physical correlate of the psychological percept
of pitch. As a by-product of integrating all available information, RAPT makes
a binary voicing classification regarding the presence or absence of voicing in the
speech signal. Within the limited model of two-state voicing and single-frequency
voiced excitation, RAPT provides reliable FO and voicing estimates by considering
all possibilities simultaneously in a large temporal context.

For some applications a graded measure of voicing, rather than a two-state classi-
fication, may be required to quantify the mix of periodic and random components in
the speech signal. The maximum non-zero-lag value in the NCCF of eq. (3.4) is one
such measure. Once FO has been estimated using RAPT, the inter-period correla-
tion over exactly one glottal period can be computed by setting w to the estimated
period and k& to the lag corresponding to the estimated F0. The periodic/aperiodic
ratio also may be estimated as a function of frequency, by computing the NCCF
on band-passed versions of the speech signal.

This chapter provided an overview of the speech production process that should
help in the understanding of the pitch and voicing determination problems. The
characteristics of the normal speech signal that make FO analysis difficult were
outlined, and the limitations of the speech-production model were described. Some
applications of FO analysis were then presented. Some commonly-encountered F(
candidate generating functions were defined. Finally, a widely used F0 and voicing
determination algorithm, RAPT, was described. RAPT owes a significant debt to
much work that has gone before, but the author would especially like to acknowledge
the contributions of Bishnu Atal [38], John Markel [26], Herman Ney [41, 42], Bruce
Secrest and George Doddington [9].
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