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SPECTRAL ENVELOPES AND
INVERSE FFT SYNTHESIS

X. Rodet* & P. Depalle

IRCAM, 31 rue Saint Merri,
75004, Pads, France

Abstract

We present a new additive synthesis method based on spectral envelopes and
inverse Fast Fourier Transform (FFT-1). User control is facilitated by the use of spectral
envelopes to describe the characteristics of the short term spectrum of the sound in terms
of sinusoidal and noise components. Such characteristics can be given by users or
obtained automatically from natural sounds. Use of the inverse FFT reduces the
computation cost by a factor on the order of 15 compared to oscillators. We propose a
low cost real-time synthesizer design allowing processing of recorded and live sounds,
synthesis of instruments and synthesis of speech and the singing voice.

Introduction

Many musical sound signals may be described as a combination of a pseudo-
periodic waveform and of colored noise [1]. The pseudo-periodic part of the signal can
be viewed as a sum of sinusoidal components, named partials, with time-varying
frequency and amplitude [2]. Such sinusoidal components are easily observed on a
spectral analysis display (Figure 1), as obtained, for instance, from a bank of filters or
from a Discrete Fourier Transform.

In consequence, some of the first attempts at sound synthesis were based on the
method called additive synthesis, that is the summation of time-varying sinusoidal
components [3],[4]. This signal modeling approach inherits a rich history of signal
processing techniques. As an example, we have developed methods to automatically
analyze sounds in terms of partials and noise that can then be applied directly to
additive synthesis [5]. In the sinusoidal model, harmonic or inharmonic partials are easy
to characterize and easy to synthesize. Another interesting aspect of additive synthesis
is the simplicity of the mapping of partial parameters (frequency and amplitude) into the
human perceptual space. These parameters are meaningful and easily understood by
musicians.

Thus, additive synthesis is accepted as perhaps the most powerful and flexible
method. However, it appears that its development and use have been discouraged by
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severe drawbacks. This is why we have developed a new additive synthesis method
based on spectral envelopes and inverse Fast Fourier Transform that we name FFT '1.

The first drawback of the classical oscillator method of additive synthesis is the
computation cost which can easily be seen by considering a sound such as a low pitch
piano note that can sometimes have more than a hundred partials. In the following we
will examine this cost in detail and find a gain of 10 to 30 in favor of FFT-I versus the
classical method. The second drawback of the oscillator method of additive synthesis is
the difficulty of introducing precisely controlled noisy components. Noise components
are very important for realistic sounds and musical timbres. As an example, speech or
the Japanese Shakuhachi flute cannot be created without noise. Our method makes
noisy components easy to describe and cheap to compute. Last but not least, controlling
hundreds of sinusoids is a great challenge for the computer musician. We will explain
how a scheme based on spectral envelopes renders this control more simple, direct and
user friendly.

Theory and the oscillator method

Additive synthesis is usually done with a bank of sinusoidal oscillators. Let us
call J the number of partials of the signal to be computed at a certain time, that is at a
certain sample n. Let the frequency, the amplitude and the phase of thej thpartial, l<j<_J,

be named respectively fi, aj, and _j. More precisely, since they are functions of time,

i.e. of n, we write them fj[n], aj[n], and _j[n]. Usually, fi[n] and aj[n] are obtained at
each sample by linear interpolation of the breakpoint functions which describe the
evolution of fj and aj. The phase, which is often ignored, requires a different procedure
and we delay its treatment to a further section. The jth partial is therefore defined by:

ci[n] = aj[n].cos(Oj[n])

I:I)j[n]: _j[n - 1]+ 2x fi[n]
Sr

and the signal to be computed is:
J

s[n] = Ecj[n]
j=l

In the the oscillator method, the instantaneous frequency and amplitude are

calculated first by interpolation. Then the phase _j[n] is computed. A table lookup is
used to obtain the sinusoidal value of this phase and the sinusoidal value is multiplied
by aj[n]. Finally cj[n] is added to the values of the j-1 previous partials already
computed. The computation cost Cadd(J) of the oscillator method is of the form ct.J per

sample, where a is the cost of at least 5 additions, 1 table lookup, 1 modulo 2P, and 1
multiplication. Its value is very dependant of the processor being used. Even though it is
possible to modify the sinusoidal oscillator in order to produce large or narrow band
limited random signals by combined amplitude and phase modulation, this has rarely
been done.

Inverse Fast Fourier Transform additive synthesis (FFT '1)

In our method [6], the computation of the partials is not done by a bank of
oscillators but by an Inverse Fast Fourier Transform, that is a transformation of a short
term spectrum (STS) S£[k] into the corresponding time-domain signal sw£[n]. To better
explain the method, let us consider first an analysis method familiar to many people, the



analysis by Fast Fourier Transform such as used in the Phase Vocoder [7]. In this
analysis, the signal s[n] is first cut into successive frames s£[m] which overlap (Figure
2). Each frame is mutiplied by a so-called window signal w[m] such as the well known
Hanning window. Note that with an appropriate choice of w and of the overlapping
factor d (typically d=0.5), sin] can be exactly reconstructed from the windowed frames
sw£[m] by the so called overlap-add method. Then the complex STS of each frame is
computed by FFT, leading to a succession of spectra So[k], Si]k], S2[k] .... Since
spectra S£]k] are complex valued, as an example of a $TS, on figure 1 we present its
magnitude. Now the FFT-1 method is easily understood as just the inverse process. That
is, start from the spectra S£[k] , compute their Inverse Fourier Transforms to get the
swt[ml and overlap-add them in order to obtain the time-domain signal s[n].

It should be clear that any signal can be exactly constructed in this manner,
provided exact successive spectra S£[k] are computed and given to the inverse
transform. But for reasons of efficiency we make some approximations. First, looking at
figure 1, one note that a partial is represented in a spectra by a few points.of significant
magnitude, typically K=9. This means that to build the contribution of a gwen partial in
the STS S£[k], we only have to compute these K spectral values and add them to S£[k].
If N is the size of a frame (typically N=256), we find here a gain in computation
roughly proportional to N.d/K = 15. The second approximation is optional. If the
parameters of a partial are slowly varying we may consider them constant on one frame,
i.e. we consider that we have a pure sinusoid during the small interval of one frame. The
advantage of this approximation is that we can then use a window w which is
symmetrical around its center and thus has a real spectrum. As explained further, this
replaces a complex multiplication (implemented as 4 real multiply and 2 real add
instructions) by 2 real ones. However, this advantage is balanced by some drawbacks.
Since the window w has to be symmetrical, fast changes in amplitude or frequency
forces the use of short windows, thereby decreasing the computational saving of the
method. This tradeoff can be adjusted according to the application, and the processor in
use.

Construction of a STS

Let us describe exactly the construction of an STS presented in the previous

section. Let fi, aj and q)jbe the mean values of fi]n], aj[n], qbj[n]on the frame £. Let W be
the Fourier Transform of the window w. Then the contribution of the partial j in the

STS S£[k] is aj.ei_j.w]fj-k], which means that W is shifted in order to be centered

around fj and multiplied by the complex amplitude aj.ei_j. Naturally this complex
contribution is added in S£[k] to the contributions of the other partials. Note that, as
announced in the previous section, here appears a complex-complex or real-complex

multiply between aj.ei_j and W[fj-k] according to whether W is complex or real.

Optimizations

The cost in computation of the inverse FFT is a fixed cost, independent of the
number of components. It amounts to only a fraction of what today's processors are able
to achieve. On the contrary, the cost of the construction of a STS is proportional to the
number J of components and therefore needs to be diminished. This cost decreases with
the number K significant values in the spectrum W of the window. For this reason a good
window has few significant values. But for an exact construction of signals, the sum of
two overlapped windows should amount exactly to I in the overlapped region. Moreover,
in this region the amplitudes and the frequencies of the partials are interpolated by the



windows, from the value in one frame to the value in the next frame. This second
requirement suggests a triangular window which is not compatible with the first
requirement. A nice solution to this problem is found when one notes that the first
requirement appears in the frequency domain while the other appears in the time domain.
Then two windows can be used. The first window named Wl has as few significant
values as possible and is used to compute the contribution of each partial to the STS St[k]
as explained previously. Then the result of the inverse transform of S£[k] is the time-
domain windowed frame wl[m].s[m] where s[m] is the signal that we want to produce.
Then a second window w2 is applied. It is defined by w2 [m]=tr[m]/wl[m], where trim] is
the triangular symmetric window (figure 3). The result of this application is:

wt[m].s[m].tr[m]/wl[m] = s[m].tr[m],
fulfilling our second requirement of a triangular window on the time-domain signal. Note
that this procedure is not costly since it is applied globally for all the partials. But it
insures that the overlap-add uses frames of signal with a triangular window, s[m].tr[m].
As we said, the advantage is that amplitudes of partials are linearly interpolated as in the
classical method. Moreover, we explain in the following section how it permits, by an
adequate phase adjustment, the removal of a great deal of the amplitude modulation
distortion which may appear when the frequency of a partial varies rapidly from one
frame to the next.

Finally, note that the number K of significant values in the spectrum W of the
window can be adjusted at best by use of an auditory model. As a simple example,
partials with low amplitude obviously require a smaller K.

Phase adjustment

Phase and frequency of a partial cannot be given independent arbitrary values
without some care. In general, when both frequency and phase are given, these values
have been estimated on a signal by some analysis method [5]. Then the phase is known

with a rather good precision in a 2_ interval. But the frequency is less precise and needs
to be corrected in order to be compatible with the phase information. When this is done,
the frequency f(t) and the phase 0(t) can be defined exactly at any instant t.

To avoid possible confusion, we now use superscripts for the indexes £ and

£+1 of successive frames: let f£, ag and fg+l, a£+l be the frequency and amplitude of a
partial in these frames. When f£_fg+l, some amplitude modulation can occur by phase
cancellation in the overlapped region as shown in figure 4. This modulation is maximum
at the point where the two triangular windowed overlapped sinusoids are of equal
amplitude. The corresponding instant 'r is easy to find because the window w2 is
triangular hence linear. Now the modulation can largely be reduced if the phase function
in each frame is chosen so as to be equal at time 'r. Naturally the chosen value is the exact

phase 0('r) determined as explained in the previous paragraph.

Noise components

Noise components of a natural sound appear in its STS as in figure 1. In our
FFT '1 synthesis method, we can introduce noise components precisely in any frequency
band narrow or wide and with any amplitude. We simply add in the STS under
construction, at proper places, bands of STS's of Wl windowed white noise or of any
noise signal. This is easy and inexpensive if the STFT has been computed and stored in a
table before the beginning of the synthesis stage. There exist analysis methods [5],[8],[9]
to separate the noise components from the sinusoidal ones, allowing the preparation of
tables of noise component STS's.
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Implementation and performances

The algorithm has been implemented first in UDI [10] and in real time on the
SUN-Mercury Workstation [11] and SGI Indigo [12]. In terms of cost, one of the critical
part of the FFT 't algorithm is the construction of a STS S. For each partial, the critical

part consists of K iterations of the form: aj.ei_j.w[fj-k]. For efficiency, W is tabulated and
hence over-sampled by a factor q (typically q=28). This table can be stored in an
interleaved way such that the K successive values to read are in consecutive memory

locations. Let Wj k such a real value read from the table. The complex value aj.ei_j can be
computed before the loop K in form of the couple of real values (x, y). Then the
instructions in the loop are:

* read Wj,k from the next location in the table W,

· compute x*wj,k and Y'Wi,k,

· store x*wj,k and y*wj,k in the next locations of the complex STS S.

The loop itself and the data preparation for the loop can be done with few cycles
on modern processors. The number of cycles is on the order of 80 on a RISC processor.
On a superscaler, this number should be divided by a factor 2. As an example on the Mips
3000 of the SGI Indigo [10], on the order of 200 partials can be computed in real time at
44.1KHz (N=256) where one third of the CPU time is used for the inverse FFT algorithm
itself. Note that noise components are far less costly than partials.

In general, the computation cost is of the form C£ft(J) = _ + 3'J where 13and 3'

depend on the processor in use. Comparing Cfft(J) and Cadd(J) = etJ, we have the

following results. When o_< % there exists a lower limit L = _3/ (o_- 5') under which the
oscillator method is more efficient than FFT '1 (typically L=20). But the saving in
computation cost increases with the number of partials. There also exists an asymptotic

maximum gain of computation G = cc/ 3'(typically G=30).

Control by spectral envelopes

In usual implementations of additive synthesis, fj[n] and aj[n] are obtained at each
sample by linear interpolation of breakpoint functions of time which describe the
evolution of fj and aj versus time. When the number of partials is large, control by the
user of each individual breakpoint function becomes impossible in practice. Another
argument against such breakpoint functions is as follows. In the ease of the voice and of
certain instruments, a source filter model [13] is an adequate representation of some of
the behavior of the partials. Then the amplitude of a component is a function of its
frequency, i.e. the transfer function of the filter [14]. That is, the amplitude aj can be
obtained automatically by evaluating some spectral function (Figure 5), named spectral
envelope e(f') at the frequency fj of the partial j. The amplitude variations induced by
frequency vaJri'ations such as vibrtito can eventually be very large [14]. In consequence, a
breakpoint function of time cannot neglect these amplitude variations and thus may have
many breakpoints. Moreover, the amplitude of a partial is then not an intrinsic property of
the sound independent of other characteristic such as fundamental frequency. Therefore
the amplitude should not be stored in a breakpoint function of time, otherwise
modifications of fundamental frequency or vibrato cannot be applied.

On the contrary, a spectral envelope such as the one in figure 5 can be
described as an analytical function of a few parameters, whatever number of partials it is
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used for. It can vary with some of its parameters for effects such as spectral tilt or spectral
centroid changes known to be related to loudness and brilliance. Spectral envelopes can
be obtained automatically by different methods among which Linear Prediction analysis
[15]. If the amplitudes and frequencies of the partials are already known from sinusoidal
analysis, the Generalized Discrete Cepstral analysis [16],[17], provides reliable
envelopes, the smoothness of which can be adjusted according to the order as in classical
cepstral analysis. From the previous arguments, it appears why we describe amplitudes of
partials by use of successive spectral envelopes defined at specific instants, for example
the beginning and the end of the attack, sustain and decay of a note, etc....[18]. Then at
any instant t, the spectral envelope to be used is obtained by interpolation between two
successive envelopes. Let us also say that the specific instants can also be found
automatically for the optimal reconstruction of the sound by linear interpolation between
two successive envelopes [19]. It should not be necessary to add that an amplitude
spectral envelope is even better adapted for the description of noise components.

Frequencies and phases also can be described by similar envelopes that we
call generalized spectral envelopes. As an example, sustained sounds have partials with
frequencies very close to harmonic values of the fundamental frequency. It is therefore
advantageous to record only the deviation from harmonicity as a function, called
frequency deviation envelope, of the harmonic number or of the harmonic frequency.
Then, at the synthesis stage, it is easy to compute the frequency of a partial, but we still
have the control of the amount of inharmonicity in the resulting sound. The same
procedure can be applied for the phases of the partials.

Conclusion

Our new method of additive synthesis by FFT '1 brings a solution to the three
main difficulties of classical additive synthesis. The processing time (calculation cost)
can be divided by a factor of up to 20. Apart from one inverse FFT - the cost of which
is independent of the number of voices and of sinusoid and noise components - the
calculation is reduced to the construction of the Short Term Spectrum. By optimization
in time and frequency domains, we have found that this construction can be limited, for
each sinusoid, to simple table lookups and multiplications of a small number of values,
such as 9. This can be compared with the possibly 128 values in the short term window
to be computed with the usual method. As in the case of oscillator-based additive
synthesis, our procedure can build sinusoids with rapidly-varying amplitude and
frequency, and with phase control if required. For each sample, the amplitude and the
frequency are the values interpolated between values given at each frame corresponding
to lms, for example.

It is easy and not costly to introduce noise precisely in any frequency band
narrow or wide, and with any amplitude. We just have to add into the STS under
construction, at the proper places, bands of STS's of white noise or of any noisy signal
extracted from natural sounds for instance. We have developed methods to
automatically analyze sounds in terms of partials and noise that can then be applied
directly to FFT '1. Processing of sounds is therefore possible with a high degree of
precision and synthesis can be done simultaneously.

In our method, control is made easier by use of spectral envelopes instead of the
time-functions classically used for additive synthesis. Precisely, the characteristics of
the sound are given in terms of features such as amplitude envelope of partials,
fundamental frequency, deviation from harmonicity, noise components, etc .... These
spectral envelopes need only to be defined at some specific times such as beginning of
attack, end of attack, end of sustain, etc .... Then at any time, the synthesis algorithm
uses envelopes interpolated between the defined envelopes. This procedure renders user
control much more economic and efficient.



Finally, we also suggest that a limited cost real time multi-timbral instrument
can easily be designed based on FFT-I. This would have all the possibilities of present
day synthesizers, plus many others such as the precise modifications of sampled sounds,
speech and singing voice synthesis. Sound examples of pure synthesis and processing
are very successful.
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Figure 1. A Short Term Spectrum magnitude showing partials and noise.
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