SPECIAL SECTION
Industrial Process Control

By James B. Rawlings

roviding a reasonably accessible and self-con-
tained tuterial exposition on model predictive
control (MPC) is the purpose of this article. [t is
aimed at readers with control expertige, particu-
larly practitioners, who wish to broaden their perspective
in the MPC area of control techinology. We introduce the
concepts, provide a framework in which the critical issues
can he expressed and analyzed, and point out how MPC al-
lows practitioners to address the trade-offs that must he
considered in implementing a control techiology,

The MPC research literature is by now large, but review
articles have appeared at regular intervals. We should point
these out hefore narrowing the focus in the interest of pre-
senting a reasonably sclf-contained tutorial for the
nonexpert. The three MPC papers presented at the Chemi-
cal Process Control (CPCY V conference in 1936 are an excel-
lent starting point [2]-[4]. Qin and Badgwell present

comparisons of industrial MPC algorithms that practitio-
ners may find particularly useful. Chen and Allgiwer and
Morari and Lec provide other recont reviews [5], [6]. Kwon
provides a very extensive list of references [7]. Moreaver,
several excellent hooks have appeared recently [8]-[10]. For
those interested in the status of MPC for nonfinear plants,
[11] would be of strong interest, Finally, Allgbwer and co-
workers have presented a recent minicourse covering the
area [12].

Models

The essence of MPC is to optimize, over the manipulable in-
puts, forecasts of process hehavior. The forecasiing is ac-
complished with a process model, and, thercfore, the model
is the essential element of an MPC controller. As discussed
subscquently, models arc not perfect forecasters, and feed-
hack can overcome some effects of poor models, but starl-
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Figare 1. Example inpur aind siate constrain regions defined by

{3)-(4).

Figure 2. Evample input and state consireint reglons defined by

{7)-{8)

ing with a poor process modelis akin ta driving a car at night
without headlights; the feedback may he abit late 1o be truly
offective.

Linear Models
Historically, the models of choice inearly industeial MPC ap-
plications were time domain, input/output, step, or impulse
response models [13]-[15]. Part of the early appeal of MPC
for practitioners in the process industrles was undoubtedly
the ease of understanding provicded by this moclel form. It
has become more common for MPC researchers, however,
to discuss linear models in state-space form:

a_ Ax + Bu

ot
y=Cx

Xy =Ax;+Hug

yi=tx;

in which x is the n-vector of states, y is the pvector of (mea-
surable) outputs, uisthe mvector of (nanipulable) inputs,
and £ is the continuous-time and j is the discrete-time sam-
ple nwmnber. Continuous-time models may be more famillar
to those with a classical control background in transfer
functions, but discrete-time models are very convenient for
digital computer implementation, With abuse of notation,
we use the same system matrices (A, 5,0 for either madel,
but the subscquent discussion focuses an discrete time.
Transformation from continuous-time to discrete-time
maclels is availalle as a one-line command in alanguage like
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Octave or MATLAB, Linear models in the process industries
are, by their nature, empirical models and identified from in-
put/output clata. The ideal moedel form for identification pur-
poses is perhaps best left to the experts in identification
theory, but a survey of that literature indicates no disadvan-
tage to using state-space madels inside the MPC controller.

The discussion of MPC in state-space form has several ad-
vantages, Including easy generalization t¢ multivariable sys-
tems, ease of analysis of closed-loop properties, and anline
computation. Furthermore, starting with this model form,
the wealth of linear systems theory—the linear quaclratic (LQ))
regulator theory, Kalman filtering theory, internal mocel
principle, ete—is immediately accessible for use in MPC, We
demonstrate the usefulness of these tools subsequently.

A word of cautlon is also in order. Categories, frame-
works, and viewpoints, while indispensable for clear think-
ing and communication, may hlind us to other possibilities.
We should resist the sasy temptation to formulate all con-
trol issues from an .QJ, state-spacc framework. The ten-
dency is to focus on those issues that are easily imported
into the dominant framework while neglecting other issues,
of possibly equal or greater import te practice, which are
difficult to analyze, awkward, and inconvenient.

From a theoretical perspective, the significant shift in
problem foymulation came from the MPC practitioners who
insisted on maintaining constraints, particularly input con-
straints in the problem formulation

‘:::-:Ax-i—B Xp = Ax;+ Bu D
y=Cx  y,=Cx, @
Du<d Du;=sd (€))]
Hesh Hx,<h D

inwhich D, K are the constraint matrices and d, i are positive
vectors, The constraint region boundaries are straight lines,
as shown in Fig, 1. At this point we are assuming that
x =0,u =0 is the steady state to which we are controlling the
process, but we treat the more general case subsequently.
Optimization over inputs subject te hard constraints
leads immediately to nonlinear control, and that departure
from the well-understood and well-tested linear control the-
ory provided practitioners with an important, new control
technology and motivated researchers to better under-
stand this new framework, Certainly optimal control with
constraints was not anew concept in the 1970s, but the mov-
ing horizon implementation of these apen-loop optimal con-
trol solutions subject to constraints at each sample time
was the new twist that had not been fully investigated.
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Nonlinear Models

The use of nonlinear models in MPC is motivated by the pos-
sibility of improving contral by improving the quality of the
forecasting. The fundamentals in any process control prob-
lem-—conservation of mass, momentum, and energy, con-
siderations of phase equilibria; relationships of chemical
kinetics and properties of final praoducts—all intreduce
nonlinearity into the process description. Determining the
scttings in which the use of nonlinear modecls for forecasting
delivers improved control performance is an open issue,
For continuous processes maintained at nominal operating
condifions and subject to small disturbances, the potential
improvement would appear small. For processes aperated
over large regions of the state space—semibatch reactors,
frequent product grade changes, processes subject to large
disturbances, for example—the advantages of nonlinear
models appear larger,

The essence of MPC is to optimize
forecasts of process behavior. The
forecasting is accomplished with a
process model, and, therefore, the
model is the essential element of an

MPC controlier.

[dentification of nonlinear models runs the entire range
from models based on fundamental principles with only pa-
rameter estimation from data to completely empirical non-
linear models with all coefficients identified from data. We
will not stray into the issues of identification of nonlincar
models, which is a large topic by itself. The interested
reacler may consult [16] and [17] and the references therein
for an entry point into this literature, Qin and Badgwell’s re-
cernt survey of vendor MPPC products includes those based
on several forms of polynomial nonlinear auto-regressive
moving-avetage exogenous (NARMAX) models and nonlin-
ear neural net models [18]. Bequette provides a summary
review of the models used in nonlincar MPC [19].

Regardless of the modet form and identification methed,
for tutorial purposes we represent the nonlinear moclel in-
sitle the MPC controller also in state-space form:

-d’:- = FQ )

d X = f(xf""j)

y=g(x) J"j'_‘g(x)) (B
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If the model is nonlinear, there is no advantage in keeping
the constraints as lincar inequalities, so we consider the
constraints as mombership in more general regions 24,X
shown in Fig. 2.

MPC with Linear Models

We facus on formulating MP'C as an infinite horizon optimal
control strategy with a cuadratic performance criterion, We
use the following discrete-time model of the plant:

X = AxJ,- +B(u; + ) o)

Y;=Cx;+p. (10)

The affine terms d and p serve the pur-
pose of adding integral control. They may
be interpreted as modeling the effect of
constant disturbances influencing the in-
put and output, rospectively. Assuming
that the state of the plant is perfectly mea-
sured, we define MPC as the feedback law
u; =plx ) that minimizes

0= %i(y}. —f)’Q(yj ~ P+ (=Y R{u ) + AulSaa
P an

in which Aujgapuj__,. The matrices §, R, and § are as-
sumed to he symmetric positive definite. When the com-
plete state of the plant is not measured, as is almost always
the case, the addition of a state estimator is necessary (see
the “State Estimmatlon” scetion).

The vector ¥ is the desired output target and ii is the de-
sired input target, assumed for simplicity to he time invari-
ant. Inmany incustrial implementations, the desired targets
are calenlated as a steady-state economic optimization at
the plant level. [n these cases, the desired targets arc nor-
mally canstant hetween plant optimizations, which are per-
formed on a slower time scale than the one at which the
MPC controller operates, In hateh and semi-batch reactor
operation, on the other hane, a final time objective may he
optimized instead, which produces a time-varying trajec-
tory for the system states. Even in continuous operations,
some recommend tuning MPC controllers by specifying the
setpoint trajectory, often a first order response with adjust-
abletime consiant. As diseussed by Bitmead et al. [10] in the
context of generalized predictive control {GPC), one can
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pose these types of tracking prohlems within the LQ frame-
worle by augmenting the state of the system to describe the
evolution of the reference signal and posing an [.Q problem
for the combined system.

For a time invariant setpoinl, the steady-statc aspect of
the control prohlem is to determine appropriage values of
(vex, ) Ideally, v, = ¥ andy, =u. Process limitations ane

The fundamentals in any process
control problem—conservation of
mass, momentum, and energy;
considerations of phase equilibria;
refationships of chemical kinetics and
properties of final products—all
infroduce nonlinearity into the

process descripiion.

constraints, however, may prevent the system from reach-
ing the desired steacly state, The goal of the target calcula-
tionis Lo find the feasible triple{y, ,x ;. ,u, Y such that y, and u,
areas close ns possible to ¥ andif, We address the target cal-
culation helow.

To simplify the analysis and formulation, we transform
(11) using deviation variables to the generic infinite horizon
uadratic criterion

12
P = 52 z’JQz} + U'J,-Rvj + AU;SAUI.
= (12)

The ariginal criterion (11) can he recovered from (12) by
makinyg the following substitutions:

zypeyi—Cag—py wyex;-X, bpeu;-ng
inwhich y,, x,, andu, are the steady states satisfying the fol-
lowing relation:

x, = Ax, -+ Blu + d}
Ys=Cxo+p.

By using deviation variahlos, we treat separately the steady-
state and the dynamic clements-of the control problem,
thereby simplifying the overall analysis of the contreller.
The dynamic aspect of the control problem is to control
{y.x.u}to the steady-state values (¥,.X, .1, ) in the face of
constraints, which are assumed not to e active at steady
state, i.e., the origin is in the strict interlor of regions A',if.
See [20] for a prellminary treatment of the case in which the
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censtraints are active at the steady-state operating point,
This part of the problem is discussed in the “Receding Hari-
zon Regulator” section, In particular, we determine the state
feedback lawe; =p(w ;) that minimizes (12), When there arc
no incquality constraints, the fecdhack law is the linear qua-
dratic regulator, With the addition of inecuality constraints,
however, an analytic form for p(iw ;) may not exist. For cases
in which an analytic solution is unavail-
ahle, the feedback law is obtained by re-
peatedly solving the opendoop optimal
control problem. This strategy allows us
to consider only the encountercd se-
(uence of measured states rather than the
entire state space. lor a further discus-
sion, sec Mayne {21],

If we consider only linear constraints
on the input, input velocity, and outputs of
the form

thain < Duk su
~ty, S AU, SA,,
Yty = th = Ymax

maxr

a3

we formulate the regulator as the solution of the foltowing
infinite horizon optimal control prohlem;

) 1o, , s
min Px;) ==Y 2,0z, + 6, Ro, + Ap,SA,
{rk oy 2 pat

subject to the constralnts

Wy =X, =X, Uy =~
w,,, =Aw, + 8y, z, =Cw,
U =, = Do, S, — Uy
~A, S A, £A,

Yuto —¥s S ka = Yioax =¥y

If we denote

{w;“ (xj),u;(xj)}:;“ =argmin rl)(xj),

then the control law is

p(x;} =ua(x)

We address the regulation problem in the "Receding Hori-
zon Regulator” section.

Combining the solution of the target tracking prallem
amdl the constrained regulator, wo define the MPPC algorithm
as follows:

1. Obtain an cstimate of the state and disturbances
=(x;,pd
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2. Petermine the steady-state target = (y,.x,.4, )

3. Solve the regulation problem =» o .
A Letu,=v;+u,

5. Repeat far j « j+1.

Target Calculation

When the number of the inputs equals the number of out-
puts, the solution to the unconstrained target probiem Is
abtained using the steady-state gain matrix, assuming such
amatrix exists (i.c., the system has no integrators). For sys-
tems with uncgual numbers of inputs and outputs, integra-
tors, or inequality constraints, hoewever, the target calcula-
tion is formulated as a mathematical program [22], [23].
When there are at least as many inputs as outputs, multiple
combinations of inputs may yield the desired output target
at steady state, For such systems, a mathematical program
with a least-squares objective is formulated to determine
the best combinations of inputs, When the number of out-
puts is greater than the number of Inputs, situations exist in
which no combination of inputs satisfies the output target
at steady state. For such cases, we formulate a mathemati-
cal program that determines the steady-state outputy, =y
that is closest to ¥ in a least-squares sense,

Instead of solving separate problems to establish the tar-
get, we prefer to solve one probtem for both situations.
Through the use of an exact penalty [24], we formulate the
target tracking problem as a single quadratic program that
achiaves the output target, if possible, and relaxes the prob-

lem in an 4 #Z optimal sense if the target is infeasible. We
formulate the soft constraint

y-Cx,-p=n,
y-Cx;-pz-n,
nzo

by relaxing the constraint Cx + p = ¥ using the slack varialile
1. By suitably penalizing n, we guarantee that the relaxed con-
straint is binding when it is feaslble, We formuiate the exact
soft constraint by adding an {1/(22 penalty to the objective
function. The I # 2 penalty is simply the combination of 2 lin-
ear penalty g_nand a quadratic penalty v ., in which the el-
ements of ¢, arc strictly nonnegative and @, is a symmetric
positive definite matrix, By choosing the lincay penalty sulffi-
ciently large, the soft constraint is guarantecd to be cxact. A
lower bound on the elements of g, to ensure that the original
hard eonstraints are satisfied by the solution cannot be cal-
culated explicitly without knowing the solution to the original
problem, because the lower bound depends on the optimal
Lagrange multipliers for the original problem. In theory, a
conservative state-dependent upper bound for these multi-
pliars may he obtained by exploiting the Lipschitz continuity
of the quadratic program [25]. In practice, however, we
rarcly necd to guarantee that the 4/f penalty is exact,
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Rather, we use approximate values for ¢, obtained by com-
putational experience. When constructing an exact penalty,
the quadratic term is superftuous, The quadratie term adds
an extra degree of freedom for tuning, howaver, and is nec-
cssary to guarantec uniquenass,

Wenow formulate the target tracking optimization as the
following quadratic program:

. Pt Y
Jmin SO0+ (o, Y RGw—iD)+gin
subject to the constraints
-4 -B 0][x,{[=]] Bd

C 0 [ ju,[izHy-p
C 0 - nl=ly- P (15&)
n=0 (15h)
uruin S DHT S Hll’l?!‘(' ymin S Cx‘s + p S ymax (15(‘.)

in which R, and @}, are assumed to be symmetric positive
definite.

Because x, is not explicitly in the objective function, the
question arises as to whether the solution to (14} is unigque,
If the feasible region is nonempty, the solution exists be-
cause the quadratic program is bounded helow on the feasi-
ble region. If Q, and R, are symmetric positive cefinite, y,
and &, are uniquely determined by the solution of the qua-
dratic program. Witheut a quadratic penalty on x,, how-
ever, there is no guarantee that the resulting solution for x,
is unique. Nonuniqueness in the steady-state value of x,
presents potential problems for the controller because the
origin of the regulator is not fixed at each samnple time. Con-
sider, for example, a tank in which the level is unmeasured
(i.e,, an unobservahle integrator), The steady-state solution
is to setu, =0 {i.c., balance the llows). Any level x_, within
bounds, however, is an optimal alternative, Likewise, at the
next fime instant, a differant level would be a suitably opti-
mal steady-state target, The resulting closed-loop perfor-
mance for the system could be erratic, because the
controller may constantly adjust the level of the tank, never
letting the system settle to a steady state.

To aveid such situations, we raestrict our discussion to
detectable systems and recommend redesign if a system
does not meet this assumption. For detectable systoms, the
solution to the quadratic program is unicue, assuming the
feasible region is nonempty. The details of the proof are
given in [20]. Uniqueness is also guarantecd when only the
integrators are observable. For the practitioner, this condi-
tion translates into the requirement that all levels are mea-
sured, The reason we choose the stronger condition of
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detectability is that if good control is desired, then the un-
stable modes of the system should be observable, Detect-
abllity is also required to guarantee the stability of the
regulator.

Empty feasible regions are a result of the inequality con-
straints (15¢), Without the inequality constraints (15¢) the
feasible region is nonempty, thereby guaranteeing the ex-
tstence of a feasible and unique solution under the condi-
tion of detectability. For example, the sclution
(u,,x, M ={-d0,|y—pl) is feasible, The addition of the
inequality constraints (15¢), however, presents the possi-
Lility of infeasibility. Even with well-defined constraints,
M < ey A0 ¥ro < Yo disturbances may render the fea-
sible region empty. Since the constraints on the input
usually result from physical limitations such as valve satu-

The difficulty that MPC introduces
into the robustness question is the
open-loop nature of the optimal
control problem and the implicit
ieedback produced by the receding

horizon implementation,

ration, relaxing only the output constraints is one possihil-
ity to circumvent infeasibilities. Assuming that i, <
~d 5 i, the feasible region is always nonemply. We con-
tend, however, that the cutput constraints should not he re-
laxed in the target calculation, Rather, an infeasible
solutien, readily determined during the initial phase in the
solution of the quadratic program, should be used as an in-
dicator of a process cxception. While relaxing the output
constraints in the dynamic regulater is common practice
[2G]-[20], the culput constraint violations are transient. On
the other hand, by tclaxing output constraints in the target
calculation, the controller sceks a steady-state target that
continuously violates the output constraints, The steady vi-
olation indicates that the controller is unable to compen-
sate adequately for the disturbance and, therefore, should
indicate a process exception.

Receding Harizon Regulator

iiven the calculated steady stato, we formulate the regula-
tor as the following infinite horizon optimal contrel prob-
lem:

1
min M{x ;) ==Y’ OCw, + v, Ru, + AU, SA
{16k b4} ( j) Eg“ i) ( 3 RV R 1 .

(16

subject to the constraints:
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Wy =x;-X;, Dpy=l -0, (172}
Wy, = Ay, + By, (171

Lo 8 S D0, S0, — U, (17¢)
—A, €AD, €A, 7y

Y-y stw, 2¥-y,. (17c)

We assume that Q and R arc symmetric
positive definite matrices. We also assuine
that the origin (w,p ) =(00) is an cle-
nent of the feasible region W % ¥ (where
W= {aw [ Cio SYWIx_ys] and W={v|“mln
0o Sdy A U S AV E A, -} T the pair
(A, B) is constrained stabilizable and the
[)air(A,Q”zC) is detectable, then x; =0is
an exponentially stable fixed point of the
closed-loop system. For unstalde state
transition matrices, the optimization
problem may be ill-eonditioned because
the system dynamics are propagated
through the unstable Amatrix. To improve the conditioning
of the optimization, one can reparametrize the input as
U, = K, + r,, inwhich £ is a linear stabilizing feedback ain
for (A4,B8) [31], [32]. The system model becomes

Wy, = (A+ BKw, + By, (18)
in which r, is the new input. By initially specilying a stabiliz-
ing, potentially infcasible, trajectory, we can improve the
numerical conditioning of the optimization hy propagating
the system dynamics through the stable (4 + BK) matrix.

This reparametrization of input is highly recommended
il one chooses to solve the state equations explicitly and
remave the w, decision variables in (16). If one instcad
solves for the state and input simultancously, the condi-
tioning issue for unstable A largely disappears, because
pivoting in the lincar algebra subprolilems required to
solve the optimization provides good conditioning even if
Ais unstable. l'er nonlinear problems, simultaneous solu-
tion of state and input is also recommended if the plant
statetrajectory is potentially unstahle or exhibits high sen-
sitivity. Technigues for applying the simultaneous ap-
proach and producing a well-conditioned discrete-time
representation of the continnous-time differential equa-
tion medels are known as multiple shooting methods in the
optimization literature. Riegler and Bocl provide excellent
further reading on this topic {33], [34].

IEEE Control Systems Magazine 13



By expanding Ap, and substituting in for v,, we trans-
form (16)-(17) into the following form:

1o ; ’
min @{x ;) = 5 Y wiQw, + v Ry + 2w Mo,
pat

{rg,0p ) (19
subject to the following constraints:

w“ = x‘, u)k_” = 14{1)';d + th (2{)&)

ain & Dy ‘_'ka £ r:‘;1161!( (20b)

Yoin — ¥ = Cwiz = Yo = Ysr CZUC)

The original formulation (16)-{17} can be recovered from
(19-(20) by making the following substitutions into the sec-
ond formulation:

X, ’
X+ o wy, oo | Uy &1,
[A+BK 0 B
A<—_ . 0], Be[lJ
I K'(R+5)
C _0} M e—\‘ s
[C"QC+ K'(R+ K K5
| -SK 5 |
ReryS, Do P G| KO
«— R+ 8, . X ]
Uy — 1 i —u
dmax (_|V IA” s.‘" f{nm <—( mi_nAu S:|'

While formulation {19)-(20) is theoretically appealing, the
solution is intractable in its current form, because it is
necessary to consider an infinite number of decision vari-
ahles. To ohlain a computationally tractable formulation,
we reformulate the optimization in a finite-dimensional
cacision space.

Several authors have considered this proldem In various
forms. We concentrate on the constrained linear quadratic
methods proposed in the literature [31], [35]-[37]. The key
concept behind these methods is to recognize that the in-
cqualily constraints remain active only for a finite numbcer
of sample steps along the prediction horizon. We demon-
strate informally this concept as follows: if we assume that
there exists a feasible solution to (19}, (20), then the state

and input trajectories {w, v}, approach the origin expo-
nentially, Furthermore, if we assume the origin is contained
in the interior of the feasible region W x ¥, then there exists
a positively invariant convex set [38]
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O, ={wl (A+BK)YweW,, vj20}

such that the optimal unconstrained feedback law v = Kwis
feasible for all future time. The set W, is the feasible region
projected onto the state space by the linear contrel X (i.c.,
Wy = {wl(w Kw) € W x V]}. Because the state and input tra-
jectories approach the origin exponcntially, there exists a finite
N" such that the state trajectory {w’*}:—w‘ is contained in .,

To guarantec that the incquality constraints (20b) are
satisfied on the infinite horizon, A must be chosen such
thatw . =@, Sincethe value of ¥* depends on x;, we need
to account for the variable decision horizon length in the op-
timization, We formulate the variable harjzon length regula-
tor as the following optimization;

1%L

min  O(x ==Y [wiQuw, + 0}, Ruy, - 2, My

fon (x,) 2&%[ WQuy, + vy Ry, 2 k]
A (L 2wyl Ty 2
subject to the constraints

Wy =X,, Wy, = Aw, + By, wy e, (222)
4(1'm = IJUJ“ _Gquz £ c4[1217&' (22!))
Yoan ~¥s = Cw!\' £ Ywx ~ Vs (22(3)

The cost to go T s determined from the discrete-time alge-
braic Riccati equation

M=ATA+Q~(ATB+M(R+BTIB) (BTIA+ M),

(23)

for which many reliable solution algorithms exist. The vari-
able horizon formulation is similar to the dual-mode reced-
ing harizon centreller [39] for nonlinear systems with the
tincar quadratic regulator chosen as the stabilizing linear
controller,

While the problem (21)-{22) is formulated on a finite hoti-
zon, the soluticn cannat be ohtaines, in gencral, in veal time
since the problem is a tixed-integer program, Rather than
try to solve (21)-(22} dircctly, we address the problem of de-
termining N from a variety of semi-implicit schemes while
maintaining the quadratic programming structure in the
subsequent optinizations.

Gilbert andl 'i"an [38] show that there exists a finite num-
ber ¢ such that ;. is equivalent to the maximal (., inwhich

O, ={wl (A+BK)YweW,, forj=0..,1} o4
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They also present an algorithm for determining t* thatis for-
mulated efficiently as a finite number of linear programs.
Their method provides an easy check whether, for afixed ¥,
the solution to (21)-(22) is feasible (i.e.,wy € (). The check
consists of determining whether state and input trajectories
generated Iy unconstrained control law o, = Ky, from the
initial condition w, are feasible with respect to inequality
constraints for t* time steps in the future. If the check fails,
then the optimization (213-(22) needs to be resalved with a
longer control horizon N'» ¥ sincewy ¢ O, The process is
repeated until wy. €0,

When the set ef initial conditions {w;} is compact,
Chmielewski and Manousiouthakis [36] present a method
for caleulating an upper bound N on ¥ using bounding ar-
guments on the optimal cost function 4. Given a sct
P={x',.. x" of initial conditions, the optimal cost fune-
tion &"(x) is a convex function delined on the convex hull
(co) of F. An upper bound ®(x) on the optimal cost & (x)
for x & co{l") is obtained by the corresponding convex com-
binations of optimal cost functions & (x ) for x/ € P. The
upper hound on &' is obtained by recognizing that the state
trajectoryw; only remains outside of @ for a finite numbey
of stages. A lower bound g on the cost of ww  can be gen-
erated for x; e (2., (ses [36] for cxplicit detalls), It then fol-

Cuiput (Salution 1)_ .

Qutput {(Solution 2)
3 '—*'"—'_—'—7¥rg»1 .

0

R
—1 R S S
5 10 15 20

0 5 16, 15 20

Figure 3. Two controllers’ vesolution of owpat infeasibility:
autput versus time, Selidion (1) minimizey duration of constraing
violation; Sofution {2) minbimtizes peak size of constraing violation.

Size |
[

Duration

Figure 4. Pareto optimal crirves for size versus duration of
constraint violarion as a funceion of initial condition x,.
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lows that & < @B{x)/q. Further refinement of the upper
bounel can be obtained by including the terminal stage pen-
alty 1l in the analysis.

Finally, an efficient solution of the quadratic program gen-
erated by the MPC regulator is discussed in [40] and [41].

Feasibility

In the implementation of MPC, process conditions arisc
whore there is no solution to the optimization problem
(21) that satisties the constraints (22). Rather than declar-
ing such situations process exceptions, we sometines pre-
fer a solution that enforces some of the incquality
constraints while relaxing others to retain feasibility. Of-
ten the input constraints represent plhysical limitations
such as valve saluration that cannot be violated, Qutput
constraints, however, frequently do not represent hard
physical bounds. Rather, they citen represent desired
ranges of operations that can be violated if necessary. To
avoid infeasibilities, we relax the output constraints by
treating them as “soft” constraints.

Various authors have considered formulating output
constraints as soft constraints to avoid potential infeasibili-
ties [26]-[30]. We focus on the £ /7 cxact soft eonstraint
strategy first advocated by de Oliveira and Biegler [28]. The
attractive feature of the [/ formulation is that the qua-
dratic programming structure is retained and the resulting
solution is exact il a feasible solution exists,

Multiobjective Nature
of Infeasibility Problems
In many plants, the simultaneous minimization of the size
and duration cf the state constraint violations is not a con-
flicting objective, The optimal way to handle infeasibility is
simply to minimize both size and duration; regulator per-
formance may then be optimized, subject to the “opti-
mally” relaxed state constraints. Unfortunately, not all
infeasibilities arc as easily resolved. In some cases, such as
nonminimumn-phase plants, a reduction in size of violation
can only be obtainod at the cost of alarge increase in dura-
tion of violation, and vice versa. The optimization of con-
straint violations then hecomes a multiobjective problem.
In Fig, 3 we show two different controllers’ resolution of an
infeasibility problem.

The two-state, single-input/single-output {31303 system
model is

16 064 1
Xpo1 = ] 0 -xk -+ 0 [
Ye=-1 2x,
with constraints and initial condition

lyJsl, x,=[L5 15].



Solution (1) corresponds to a con-

troller minimizing the duration of con-
straint violation, which leads to a large
peak violation, and solution (2) corre-
aponds to a controller minimizing the
peak constraint violation, which leads
to a long duraticn of violation, This be-
havior is a system property caused by
the unstable zero and cannot be
avoided by clever controller design.

For a given system and horizon N, the
Pareto optimal size/duration curves

g
o 8 10 18 ‘20 . .0 - & 10 45 .20
: - Samples : Co -~ v . Samples.

can be plotted for dilierent initial con-
ditions, as in Fig. 4. The user must then
decide where in the size/duration
plane the plant should operate at times
of infeasibility. Desired operation may
lie on the Pareto optimal curve, bacause points below this
curve cannot be attained and points above it are inferlor, in
the sense that they correspond to larger sizes and/or dura-
tions than arc required,

We next construct soft output inequalily constraints by
introducing the slack variable £, into the optimization, We

eORSHGing.

reformulate the variable horizon regulator with soft con-
straints as the following optimization:

. &, ,
min @(x ) =2 Y {w,Quw, +viRu, + 20,Mo,
[t ng . W) 2!<=(]

+ep ke, +z'e, |+ (1/ DwMwy
subject to the constraints

Wy =Xy, Wy = Ay, +Bu,, wy €0,
(411[n £ Duk _ka = dlmx

(ymln '_y.v) —gp 5 ka

ka g3 (yTI’IEIX _ys‘)+ €y

£, 20,

We agsume £ is a syminetric positive definite matrix and z is
a vector with positive elements chosen such that output
constraints can be made exact if desired.

As a second example, consider the third-order nonmini-
mum phase system

2 -145 035 1

A=|1 0 |, B=10
0 1 0 (25)
C=[-1012 (26)

for which the output displays inverse response, The con-
troiler tuning parameters are ) =C'C, R =1, and N = 2(}, The
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Figure B. Least-squares soft constraini solution. Z =1,10, 50 and 100. Solid fincs:
closed-loop; dashed lies: open-loop predictions af fime O; dotied line: output upper
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Figure 6. MPC coniroller consisting of receding horizon
regulator, state estimator, and wareet calenfator.,

input is unconsirained, the output is constrained between
+1, and we perform slmulations Irom the initial condition
x;, =[15 15 15].Fig. 5 shows the possible trade-offs that can
lie achieved hy adjusting the quadratic soft-constraint pen-
alty, Z. We also see that open-loop predictions and nominal
closed-loop responses are in close agreement for alt choices
of tuning parameter.

State Estimation

We now turn to reconstruction of the state from output mea-
surements, [n the model of (10), the nonzero disturbances ¢
and pare employed to give offset-free control in the face of
nanzero disturbances. The original industrial MPC formula-
tions [GI’C, quadratic dynamic matrix cantrol (QDMOQC),
iclentification commancd (IDCOM)] were designed for offsct-
free control by using an integrating cutput disturbance
madel, The integrating output disturbance maodel is a stan-
dard device in LQ design [42], [43]. Similarly, to track non-
zero targets or desired trajectories that asymptotically
approach nonzero values, one augments the plant model
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dynamics with integrators. The disturbances may be mod-
eled at the input, output, or some comhination. These «lis-
turbance models are not used in the regulator; the
disturbances are obviously uncontrollable ancl are required
onlyin the state estimator, The effects of the disturbance es-
timates is to shift the steady-state target of the regutator,
Bitmead et al. [10] provide a nice discussion of the distur-
hance models poptlar in GPC, Lee et al. [44] discuss the
equivalence between the original industrial MPC algorithms
and different disturbance maodel choices, Shinskey [45] pro-
vides a good discussion of the disadvantages of output dis-
turbance maodels, in the original DMC formulation,
compared to input disturhance models.

We set d = {) and for simplicity focus on the cutput distur-
bance model. We augment the state of the system so the es-
timator produces cstimates of both state, ¥, and modeled
disturbance, p, with the standard Kalman filtering equa-
tions. The disturbance may be modcled by passing while
noise, £, through an integrator, or by passing white noisc
through somc othcr stable linear system (filter) and then
through an integrator. The disturbance-shaping filter en-
ables the designer to attenuate disturbances with setected
frequency contenl. Bitmead et al. [ 10] provide a tuterial dis-
cussion of these issues in the unconstrained predictive con-
trol context,

In the simplest case, the state cstimator model takes the
form

Xp=Ax;+Bu;+; @7
P =pi+E; {28)
Y =0t Pty @9
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Figure 8. W regions surrounding the locus of steady-state
aperating points, Solid line, steady states; deshied iines: W regions.

in which n}j,&j,\!f- are the noiscs driving the process, inte-
grated disturhance, and output measurement, respectively.
As shown in Fig. 6, we specify C)m =diag(Q, Qe i Ry, which
are the covariances of the zero mean, normally distributed
noise terms. The optimal state estimate for this model is
diven by the classic Kalman filter equations [46]. As in stan-
cdard 1.0 design, one can tune the estimator by choosing the
relative magnitudes of the noises driving the state, integratec
disturhance, and measured output. Practitioners certainly
would prefer tuning parameters more closely tied to
closed-loop performance objectives, and more guidance en
M[C tuning, in general, remains a valid research objective.

Assembling the components of the previous sections
produces the structure shown in Fig. 6.

This structure is certainly not the simplest that accounts
for output feedback, nonzero setpoints and disturbances,
and offset-free control, nor is it the structure found in the
dominant commercial venclor products. It is presentoed here
mainly as a prototype to display a reasonably flexible means
of handling these eritical issues. Something similar to this
structure has heen implemented by industrial practitioners
with success, however [47).

MPC with Nonlinear Models

What Is Desirable and What Is Possible
l'rom the practical side, industrial implementation of MPC
ith nonlinear models has aiready heen reported, 8o it is
certainly possible. Bequette reviews hoth the industrial aned
academic predictive control literature up to 1990 [19], A
nice early industrial application is reported by Gareia, in
which he uses repeaied local linearization of a noonlincar
maxlel to control a semibatch polymerization reactor [18].
Qin and Badgwell provide an excellent summary of the
cmerging vendor products for nonlinear MPC [18]. Cantrol-
lor objectives also vary widely, [n hatch operations, output
trajectories are often considered known, or defermined at a
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higher level, and the controller's objective is to track the
specified dynamic trajectory. In continuous operations,
steady-statc targets may be considered known, and the con-
troller is to find the optimal trajectory to the steady state.
Sometimes the state targets change abruptly and the con-
troller's objective is ta perform the grade transition
smoothly. Sometimes a reference output trajectery is pro-
vided for continuous operations, and, as in batch opera-
tions, the controller seeks to foliow the given output
trajectory.

Representing or approximating a nonlinear model’s dy-
namic response with some form of linear dynamics is a recur-
ring theme in much of the litcrature. The motivation is clearly
to obtain a more easily solved online optimization. One issue
that seems relatively neglected, however, is that obtaining
these updated linearized models requires knowledge of the
state, which may be cither the current state or the desired tar-
get steady state, The most popular technique for estimating
the state in the early literaturc is to mimic the lincar case,
solve the state equations in an open-loop fashion, and de-
scribe the difference between measured output and model
forecast as an integrating disturbance. This method works
well in the linear case where the model dynamics are incle-
pendent of the state. It is unlikely that integrating the state
equations in open loop is a general approach for applications
requiring nonlinear models, As the current model state devi-
ates from the plant due to open-loop integration of model er-
rors, the current medel's lincarization loses any connection to
the true dynamics. Bequette concludes that the rmost impor-
tant issue in implementing nonlinear MPC is obtatning good
state estimates [19], and more attention is being focused on
the state estimation part of the nonlincar control problem. K is
interesting to note that Qin and Badgwell report that two re-
cent nonlinear MPC vendor products provide state estimation
[unctionality in the form of the extended Kalman filter (EKI) as
well as the standard MPC regutation functionality [18].

The industrial nonlinear MPC implementations are
largely without any established closed-loop properties,
even nominai closed-loop properties. A lack of supporting
theory should not and does not, according to historical re-
cord, discourage experiments in practice with promising
new technologies. But if nonlinear MPC is to become wide-
spread in the harsh environment of applications, it must
eventually become reasonably reliable, predictable, effi-
cient, and robust against ontine failure.

From the theoretical side, it would he desirable to solve
in real time infinite horizon nonlincar optimal control prob-
lems of the type

min OCx Y= 3 Lx,.u,)

Leg el k=0 30
subject to the constraints
Xpot =X 01), X =X, 31
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ﬂ'kEM, X’K,E(‘r.

(32)
Nonlinear MPC based on this optinal control probiem would
have the strongest provable closed-loop properties. 'The con-
comitant theorctical and computational difficulties associ-
ated with this optimal control problem, either offline, but
cspecially online, are well known and formidable [3]. The cur-
rent vicw of problem (30} is: desirable, but not possible. In the
next two scctions, we evince one viewpaint of the current sta-
tus of bringing these two sides closer together.

State Feedback

As an attempt to approximately solve (30), it is natural to try
to extend to the nonlinear case the ideas of the linear reced-
ing horizon regulator. In the linear case, we define a region
in state space, W, with the following propertics:

WwWcdX, KWcl
xeW={A+BK)x e W

which tells us that in W the state constraints are satisficd,
the input constraints are satisficd under the unconstrained,
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lincar fecdback law v = Kx, and once a state enters ¥, it re-
mains in Wunder this control law. We can compute the cost
togoforx e W;itis(l/2x"1 Ly in whichTTis givenin (23). l'or
the linear case, the Gilbert and 'an algorithm provides in
many cases the largest set W with these properties, O,

Ingredients of the Open-Loop, Optimal
Control Problem

In the simplest extension to the nonlinear case, consider a
region W with the analogous properties

Wecd, KWcl
xeW=H{xKHeW,

The essential difference is that we must, under the nonlin-
ear model, ensure that the state remains in W with the lin-
ear control law. Again, for this simplest version, we
determine the linear control law by considering the
linearization of f at the setpoint;

of

A=Z00, B= -’){-(0,(1), €= %(0).
ox e dx

. cbo'i_ant'!"eﬁ-lperamfr_g_(_l()" .
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Figure 11. Manipulaied variable: T, versus |,
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or the nonlinear case, we cannet casily compute the largest
rogion with these properties, but we can find 4 finite-sized re-
gion with thesc properties. Chen and Allgéwer, therefore, refer
to this approach with nonlincar systems as “quasi-infinite ho-
tizon” [49], The main assumption required is that £'s partial
derivatives are Lipschitz continuous [50] to bound the size of
the nonlinear effects and that the inearized system is control-
lable, Most chemical processes satisly these assumptions,
and witl them we can construct region Was shown in Fig. 7,

Lot Q and Rrepresent the gquadratic approximation of the
stage cost function at the origin

Q=L 00, R=L,00.
Considor the quadratie function, ¥, and level sets of this
funetion, W,
Vi =(0/Dx1x, W, ={xIV(x}< o}

far o a pusitive scalar, Define e{x) to be the difference hetween
the state propagation under the nonlinear mode and linearized
model, é(x) = f(x Kx) - (A+ BK )y and e, (x), to be the differ-
cnceinV at these two states, e, (x) = V{(f{x ,Kx)) -V((A+BK)x).
We can show that ncar the setpoint {origin)

e < sl o< el

which hounds the effect of the nonlinearity. We can, thercfore,
find an . such that the finite horizan control law with terminal
constraint and approximate cost to go penalty is stabilizing

¥4
](D(x;-) = 3L )+ (1 DTy

k=0

nin
{og, oy

(3%
subject ter the constraints

X = F(xg ), X =%

e, x,elt, xyeW,.

We choosc o such that

max{V{f{x KxPN-V{x)+ 1/ Dx"(Q+ K RKOx} <0,
xeWy (34)

It has also been established that glohal optimality in (33} is
not required for closed-loop stahility [19], [50]. Caleulation
of the W, region in (34) remains a challenge, particularly
whon the target calculation and state estimation and distur-
hance models arc added fo the problem ag described eax-
lier. Under those circumstances, W, which depends on the
current steady target, changes at each sample. [t may be
possible that some of this computation can be performed
offline, buit resolving this computational issue remains a ro-
search challenge.
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We present a brief example to illustrate these ideas. Con-
sicler the simple model presented by Henson and Seborg
[51] for a continuously stirred tank reactor (CSTR) undergo-
ing reaction A — B at an unstable steady state:

ac, g
—A = (C —C RO
or v A)( A!;) UA
g _
a_dr e S %, 1 T.-T
dr V( -1 ac, e VpCﬂ( 3

k = koexp(~E/RT).

Fig. 8 displays the W regions computed by solving (34)
along the locus of steady-state eperating points.
For the steady-statc operating point

T, =350K, C,, =05M, T, =300K,

the closed-loop hehavior of the states with MI'C control law
(33) is shown in Figs. 9-10, The manipulated variable is
shown in Fig, 11,

Fig, 12 displays a phase-portrait of the two atates con-
verging to the setpoint and the terminal region W.

Future Developments

Although this article is intended as a tutorial, brief consider-
ation of areas of future development may prove usceful. The
theory for nominat MPC with linear modals and constraints
is reasonably mature in that nominal properties are estaly
lished, and efficient computational procedures are avail-
able. The role of constraints is reasonably weil understood.
Applications in the process industries are ubiguitous.

MPC with Nonlinear Madels

In MPC for nonlinear models, the territory 1s much less ex-
ptored. The nonconvexity of the optimal control probilems
presents theoretical and computational difficulties. The re-
search covered in this tutorial on quasiHinfinite horizons
and suboptimal MPC provide one avenue for future devel-
opment [52], [49]. Contractive MPC [53]-[55] and exact
lincarizatlon MPC [57], [538] are two other alternatives that
show promise. Mayne ot al. [59] and De Nicolae et al. [60]
provide recent reviews of this field for further reading. It is
expected, as in the case of linear MPC of the 1970s and
1980s, that these theoretical hurdles will not impede practi-
tioners from evaluating nonlinear MPC.

Indecd, as summarized by (Jin and Badgwell, vendors are
actively developing new nonlinear MPC products [18], and
many new industrial applications are appearing [61]. A vari-
ety of different nonlinear model forms are being pursued, in-
cluding NARMAX and neural network models,

Robustness

Robustness to various types of uncertainty and model error
is, of course, an active research area in MIPC as well as in
other areas of automatic control, The ditficulty that MPC in-
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troduces into the robustness question 15 the open-loop na-
ture of the optimal control problem and the implicit feed-
back produced lw the receding horizon implementation,
Several robust versions of MPC have been introduced that
address this issue [62], [27], [63]. Lee and Yu [64] define a
dynamic programming problem for the worst-case cost.
Badgwell [65] appends a set of robustness constraints to
the open-loop problem, which ensures robustness for a fi-
nite set of plants. Kothare et al. [66] address the feedback is-
suc by optimization over the state feedback gain rather than
the open-oop control sequence subject to constraints,
The rapid development of time domain worst-case con-
troller design problems as dynamic games (see [67] for an
cxcellent summary) has led to further propasais for robust
MPC exploiting this connection to f,, theory [68], [68], [60].

At this early juncture, online computation of many of the ro-
bust MPC control laws appears to be a major hurdle for
practical application,

Moving Horizon Estimation

The use of optimization subject to a dynamic model is the
underpinning for much of state estimation theory. A moving
hotizon approximation to a full infinite horizon state estima-
tion problem has been proposcd by several rescarchers
[70}-[72]. The theoretical properties of this framework are
only now emerging [73], [74]. Again, attention should be fo-
cused on whal key issues of practice that are out of reach
with previous approaches can he addressed in this frame-
work. Because moving horizon estimation with lincar mod-
els produces simple, positive definite quadratic programs,
online implementation is possible today for many process
applications, The use of constraints on states or state dis-
turbances presents intriguing opportunities, but it is not
clear what applications benefit from using the extra physi-
cal knowlecge in the form of constraints. Nonlincar, funda-
mental models coupled with moving horizon state
estimation may start to play a larger role in process opera-
tions. State estimation for unmeasured product properties
hased on fundamental, nonlinear models may have more im-
pact in the short term than closed-loop regulation with
these models, State estimation using empirical, nonlinear
models is already heing used in commercial pracess moni-
toring software. Moreover, state estimaltion is a wide-rang-
ing technique for addressing many issues of process
aperations besides feedback control, such as process moni-
toring, fault detection, and diagnosis,

MPC for Hybrid Systems

Essentially all processes contain discrete as well as continu-
ous components: onfoff valves, switches, logical overrides,
and so forth. Slupphaug and Foss [75], [76) and Bemporad
and Morari [77]-[79] have considered application of MPPC in
this environment. This problem class is rich with possibili-
Hes: for example, the rank ordering rather than softening of
output constraints to handle infeasibility. Some of the in-
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triguing questions at this early juncture are: how far can this
framnework be pushed, are implementation bottlenecks ex-
pected from the system modeling or online computations,
what benefits can be obtained compared to traditional
heuristics, and what new problem types can be tackled?
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