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Performance Analysis of Root-Music

BHASKAR D. RAO, MEMBER, IEEE, AND K. V. S. HARI, STUDENT MEMBER, IEEE

Abstract—In this paper, we analyze the performance of Root-Music,
a variation of the popular MUSIC algorithm, for estimating the direc-
tion of arrival (DOA) of plane waves in white noise in the case of a
linear equispaced sensor array. The performance of the method is ana-
lyzed by examining the perturbation in the roots of the polynomial
formed in the intermediate step of Root-Music. In particular, asymp-
totic results for the mean squared error in the estimates of the direction
of arrival are derived. Simple closed-form expr are derived for
the one and two source cases to get further insight. Computer simu-
lations are provided to substantiate the analysis. An important out-
come of this analysis is an explanation as to why Root-Music is superior
to the popular MUSIC algorithm for the linear equispaced array case.

I. INTRODUCTION

IGENDECOMPOSITION based methods have re-

cently been extensively used in estimating the Direc-
tion of Arrival (DOA) of plane waves in noise. Most of
the eigendecomposition based methods decompose the
observed covariance matrix into two orthogonal spaces,
commonly referred to as the signal and noise subspaces,
and estimate the DOA’s from one of these spaces [1]-{5].
These methods, often referred to as subspace based meth-
ods, have been shown to perform very well and are ca-
pable of resolving closely spaced sources. Recently, we
analyzed the performance of three subspace based meth-
ods [6], [7]. In particular, we examined ESPRIT 2], [3].
the Minimum-Norm method [4], and the Toeplitz Ap-
proximation Method (TAM) [5]. In addition to the above
three methods, another popular method is MUSIC [1].
MUSIC was the first method that showed the benefits of
using a subspace based approach [1]. The MUSIC algo-
rithm computes a spatial spectrum from the noise sub-
space, and determines the DOA’s from the dominant
peaks in the spectrum. Another popular variation of MU-
SIC is Root-Music [8]. Root-Music, as described in more
detail later, is similar to MUSIC in many respects except
that the DOA’s are determined from the roots of a poly-
nomial formed from the noise subspace. Although MU-
SIC is applicable to known general array configurations,
Root-Music is only suitable in the context of a linear
equispaced sensor array [8]. Some comparisons of MU-
SIC with ESPRIT, as well as Root-Music with ESPRIT,
based on computer simulations, can be found in {3] and
[9]. Some theoretical results comparing MUSIC and the
Minimum-Norm method can be found in [10] and [11],
wherein a characterization of the methods was done by
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examining the null spectrum. More recent results on MU-
SIC can be found in [12}. Our work examines Root-Mu-
sic, and characterizes the mean squared error in the esti-
mates of the DOA’s directly. The analysis provides insight
inio why Root-Music is superior to the popular (Spectral)
MUSIC algorithm in the context of a linear equispaced
array.

The organization of the paper is as follows. First, the
problem is formulated followed by a brief discussion of
Root-Music. Asymptotical results for the mean squared
error in the estimates of the DOA are derived. The results
are specialized for the one anll two source case leading to
interesting insights. They are compared to the results for
Least Squares ESPRIT. Simulation results are presented -
to support the analysis.

II. PROBLEM FORMULATION

The problem of estimating the direction of arrival of M
incoherent plane waves incident on a linear equispaced
array of L sensors is considered in this paper. For the kth
observation period (snapshot), the spatial samples of the
signal plus noise are given by

T (k) (hy (k)
Ye=1[vw ' m, - on
- M M M
: " S N Ey il D
— Z p’(ln* Z p,""e-’“‘. .. ZJ I’; 1" by
i=1 i=1 i=1
T
+ Ny, (1)

where w; = 27 (d/\) sin 0;, d being the separation be-
tween sensors, A the wavelength of the incident signat,
and 6, the direction of arrival. As in [10] and [11], the
noise vector N, is assumed to be a zero mean, complex
white Gaussian random vector, i.e., NN = ¢216,,. The
noise is assumed independent of the complex signal am-
plitudes p{*’ which are also modeled as being jointly
Gaussian. The covariance matrix P of the amplitudes
whose elements are P;, where P; = [p/*p**], is as-
sumed to be of rank M and has distinct eigenvalues. In
this paper, the overbar ‘‘—-"" will be used to denote the
expectation operator.'

Root-Music estimates z; = ¢/, i = |, *++ . M, the
signal zeros, from which w;, the signal frequencies, and
then the DOA’s 6, are determined. It utilizes the eigen-
decomposition of the covariance matrix of the observation

Jwi

'T is used to denote transpose, + to denote the pseudoinverse. * to
denote complex conjugate, and H to denote complex conjugate transpose.
Also " is used to denote estimates. and subscripts 5 and n denote param-
eters associated with the signal and noise. respectively.
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vector Y, i.e.

R=y Y= E NS SY = EAEH = EAEY + 621,

(2)
where
E=1[8,8, ,8] E=I[8%55 ",
(3)
A =diag (A, Ay, -+ 0, \L),
and A, = diag (A, N, -+, Ay). (4)
Also,
MENFESNM=N4E> > Ay =Ny + 0
>Mgar =" =N\ =0,

A; are the eigenvalues of R, and §; are the corresponding
orthonormal eigenvectors. This paper considers the effect
of using an estimated covariance matrix. Usually, an es-
timate of the covariance matrix is obtained by (time) av-
eraging N independent snapshots ie.,

— PAPH
NE}I Y, YY = EAE", (5a)
where
E = [§l7 §2s T, SL]? = [glv §2’ T, SML
A = diag (X,). (5b)

LetS, = S, + neand X, = \, + Bi. The analysis makes
use of the asymptotic properties of the errors 7, derived
in [13]. Since the results in [13] are derived with the as-
sumption of distinct eigenvalues, the results are applica-
ble to the errors in the eigenvectors corresponding to the
distinct eigenvalues, i.e., eigenvectors corresponding to
the signal subspace. The relevant first- and second-order
properties of the errors in the eigenvectors corresponding
to the signal subspace are summarized below.

—] )\k )\ 1
mal = Z———Ssa +o(N7h,
k/ Nr |(>\k—)\)2 ki ( )
1l <k l=< (6)
— NA _
mnl = S $iST(1 — 8y) + o(N7Y),
N =N)
<k l= (7)

where §;, is the Kronecker delta. In [10] and [11], it was
shown that

L
— N N o
nk=——2 2Sk+0(N )
2N I= _
5¢]I\,(>‘k N)
=aqS +o(N"), 1l=<k=<sM, (8)

III. SpEcTRAL MUSIC AND RooT-Music

The MUSIC algorithm has been widely used and stud-
ied. Comparatively, Root-Music, although used by many
researchers, has never been extensively discussed. Root-
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Music, first suggested in [8], is a variation of MUSIC,
and is useful in the context of linear equispaced sensor
arrays. Here we first present a brief discussion of MUSIC,
followed by a discussion of Root-Music.

Spectral Music: The DOA’s in the MUSIC method are
given by the locations in the peaks of S(e’*), referred to
here as the spatial spectrum, where

o 1
S = brery

This approach will be called Spectral Music. D(e’),
termed the null spectrum, is given by

VA (w) <1_§+1 S,S,”) V(w)

VH(w)PyV(w),

where V(w) is the steering vector, i.e.,

(9)

D(e™)

(10)

V(w) = , e

1 )
—[1, &,
N2 [
Noting that Py = I — P, where P, = E,E/ an alternate
expression for the null spectrum is

D(e") = V(@) (1 — Ps)V(w)

M
1 — V(w) <§l S,S,”> V(w). (11)
Root-Music: In Spectral Music, a primary motivation
for computing the null spectra was the fact that
Vi (w)S, =0, k=M~+1, -+ ,L (12)

w; being a signal frequency. Therefore, if we define poly-
nomials using the eigenvectors corresponding to the noise
subspace, i.e.,

L
Si(z) = T om0 k=M41 L
(13)
thenz, = ¢, i =1, , M, the signal zeros, are roots
of each of the above polynomials. We now define
L
D(z) = B (S()SE(1/4).  (14)

Note that the null spectrum is obtained by evaluating D(z)
on the unit circle, i.e., D(2);=.o = D(e’). Using the
fact that the signal zeros are the roots of S, (z), k = M +

I, -+ -, L, and (14), we have
L
D(z) = cII:Il (1 = zz7Y)(1 = zfz2) (15a)
M
= I (1 = 2271 = zf2)e
L
II (1 =2z ") (1 - zf2)
I=M+1
= H,(2)H{(1/z*)Hy(z)H (1/z*) (15b)
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where ¢ is a constant, H,(z) contains the signal zeros,
i.e.,

M
H(z) = 11—11 (1 - zz™", (16)
and H,(z) contains the extraneous zeros that are inside
the unit circle. Let H(z) = H,(z)H,(z), then

D(z) = H(z)H*(1/z*). (17)

H(z) can be obtained by a spectral factorization of D(z)
and has its roots inside or on the unit circle. The M signal
zeros are also roots of the polynomial H(z). However,
since the signal zeros are second-order roots of the poly-
nomial D(z), it is more expedient to just root D(z), and
identify the signal zeros from the knowledge that they lie
on the unit circle [8]. This procedure will be referred to
as Root-Music.

Philosophically, Root-Music can be viewed as belong-
ing to the same class as the Minimum-Norm method. In
the Minimum-Norm method [4], the signal roots are ex-
tracted from a polynomial formed from a vector with min-
imum norm that lies in the noise subspace. On the other
hand, Root-Music estimates the signal zeros from the roots
of H(z) formed from the vector &z, which lies in the noise
subspace, where h = [hg, by, * * + , by _,]", and

H(z) =hg + hz™' + hz72 + -+ by 27070,

(18)
In the presence of an estimated covariance matrix, the
Root-Music procedure essentially consists of obtaining
D(z) from the estimated noise subspace, and then obtain-
ing an estimate Z; of the signal zero. An estimate of the
signal frequency is obtained from the signal zero by not-
ing that 2, = |2;|¢/*. The DOA is then estimated from the
estimated signal frequency &;.

Root Versus Spectral Forms

In this paper, we analyze Root-Music in that we deter-
mine the effect of using an estimated covariance matrix
on the signal zeros of D(z) and the DOA’s. Although we
analyze Root-Music, it is important to realize that since
the signal zeros produce the peaks in the spatial spectrum
§(e™), the perturbation of the signal zeros also gives in-
sight into the Spectral Music algorithm. In fact, it will be
shown that Spectral Music has the same asymptotic mean
squared error as Root-Music. In spite of that, Root-Music
is preferable to Spectral Music. This can be better under-
stood by considering the effect of an error Az; in the signal
zero z; on the location of the signal frequency w; (cf. Fig.
1). One can see that if the error Az; is radial, then there
is no error in the estimate of the signal frequency. How-
ever, such radial errors do affect the null spectrum making
the peaks in S(e’*) less defined. This is particularly crit-
ical for closely spaced roots as they may result in only
one peak causing an apparent loss in resolution. So Spec-
tral methods always have less resolution compared to Root
forms. This was also observed in [8]. To understand the
degree to which this is true, one needs to study both

|Az:|? and |A6;|%. Methods with large | Az;|* and small
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Z- Plane
Unit
Circle
Fig. 1. Effect of error in the root location on the estimate of the angle.

| A6;|* suffer a larger degradation in resolution when a
Spectral approach is used. Such will be found to be the
case for the MUSIC algorithm.

IV. MEAN SQUARED ERROR IN THE SIGNAL ZEROS

We first analyze the mean squared error |Az;|” in the
estimates of the signal zeros. The analysis is approximate
in that higher order terms are neglected, and only terms
that give rise to terms of o (N ~1y in the mean squared
error are retained. The errors in the eigenvectors result in
errors in D(z), which in turn give rise to errors in the
signal zeros. From (15a), we have the following relation-
ship between the errors in the signal zeros and the esti-
mated D(z):

-1
D(z)=2¢ lgl (1 = (z + Az)z7")(1 = (z + Az)*z).

Substituting z = z;, z; being a signal zero, and noting that
|z;] = 1, we have

-1

L
D(e™) = ¢ [Z

(1 - (z + AZI)Zi_I)

(1= (2 + Az)*z)

L-1
=elag I |(1 - (a + Az,)z;1)|2
1
2L—l 2
= c|Az] [1}1 ‘(1 - z,zf’)l ,
I#i

where higher terms have been neglected. Taking expec-
tation of both sides, we have

B ol D(e
IAZ:‘|2 D(e ) (e™)

= Sw

= (19)

e I (1 - 2"

1#i
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where
2
62,-

el

Suy =~ =
c]g] |(1~z/z,-_')'2

l#i

L—1
L E}O (20)

hys are the coeflicients of the polynomial H(z) [cf. (18)].
The term Sy, can be interpreted as the parameter sensi-
tivity of the Root-Music method, i.e., the sensitivity of
the zeros of H(z) to perturbations in its coefficients [11],
[12]. The similarity with the expression obtained in the
Minimum-Norm method is worth noting [7]. An alternate
expression for the parameter sensitivity, useful from a
computational standpoint, is

S
s L L Lim L1
= — =L Lim ————+—
MU -1 N e D(e)
CEI l(l*ZIZi )l
L#i
L
(21)

- V{i(wi)PNVl (wi)

where V; (w) is the derivative of V(w), i.e.,

1 . .
= — (0’ jej“’, 2j312w’ ..

N/

Equation (21) can be obtained using (10) for D (e/*), and
applying L’Hospital’s rule. _

We now need an expression for li(ej‘”"). In the presence
of noise, from (11) and (5), we have

Vi(w) ©LJ(L = 1)),

D(e) =1 - V¥(w) <,§1 (S + m)(S + 77/)”) V(w).
(22)

Noting that D(e’) = 0 and using the statistics, it can be
shown that [10], [11]

— (L - M)o; d N He ve |2
D(e™) = N <k§1 O\ = 02 .V (w')Sk‘ >

(23)

Substituting for D(e/*) in (19), we have

ToP S (L= Moy (S N o
[aa ] - (2 s vt

L N
(24)
Note that D(e/') was used in [10] and [11] to compare

MUSIC and the Minimum-Norm method.

V. MeaN SQUARED ERROR IN THE DOA ESTIMATE

Now we characterize the error in the DOA’s as a result
of using an estimated covariance matrix. Let Az, =
rie’® then £ = z; + Az, = ™ + r;e’® = |Z;|€/*. Then
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it can be shown that [7]

Aw; = &; — w; = r;sin (¢; — w;),

Ab;

I

A sin (¢ )
—r P — W)
2md cos 6; ' P

Hence, the mean squared deviation in the estimate of the
DOA is given by

_ A 2 _
2 [ — 2} Msint (o — w). 2
Ab; <27rd o 0i> rf sin® (¢; — w;) (25)

To obtain an expression for (25), we need an expression
for r; sin (¢; — w;). This can be obtained in the following
manner. Differentiating the null spectrum D (e’*) [(15a)]
with respect to w, we have

dD(e™)

Dl(fjw) = do

L-1
= jc ,Z [(z,e"""(l — ze®)
=1
L-1
— e (1 = 5e™)) I (1= ge™)
k#!
(1 - z,fej“’)].
Due to estimation errors, we have
L—1
D(e*) = jé 1; |:((21 + Az)e (1 — (z + Az)*e)
- (z + Az)*e(1 = (z + Az)e ™))
L-1 .
‘ H (1 - (Zk + Azk)e_f“’)

k=1
k#1

(1 - (z + Azk)*ej‘“)}.

Substituting w = w;, the signal frequency, and neglecting
higher order terms, we have

D, (™) = je {((Zl‘ + Az)e (1 = (z; + Az)*e)

e Azi)*ejwl(l - (z + AZi)e_jw‘))

L-1 .
I (= ae ) - e
ket
= jc [((1 + Aze ) (—AzFel)

= (1 + AgFe™)(—Aze™))
L1 :
11w
k#i
= j(—Azre + Aze )V (w) PyVi(w;)
=j(—re + re®e )V Vi (w)PyV; (w;)

= 27',* sin ((A),' - ¢,)V{{(w,~)P,VV|(w,~).
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Hence,
D, (/)

rysin (w; — ¢;) = .
( ) 2(Vi (@) PyV ()

Substituting for r; sin (¢; —
in (25), we have

[ 2 32 ( jwi
|A9.‘|2=< A > Di (&) .
2xd cos 6; 4(V7(‘*’i)PNV1(°’i))

w;) from the above equation

(26)

We now need an expression for D?(e/). Starting from
(11),

Di(ek) = vt (3 85t) v

- VH(w) <§] sksf> Vi(w).

Due to the error in the eigenvectors [cf. (5)], we have

M
Dy(e*) = — Vi(w) <k§l (Send + mSE + ﬂkﬂf)>

- V(w)

M
- V() <k§. (Seme’ + meSE + mmf"))

* Vi(w)

M
Bie) = (Vi) (2 (st + ms? + maat))

V(@)

+ V() (él (Send! + nSH + mmf"))

2

Vi)
= <v{*(w,-) (é (Semi’ + mSZ’)> V()

+ V7 (a) <él (Sent! + nk55)> Vl(w,-)>2
-2k (i) (3, (i + mst) vee) )

+ 2 Re <V{"(w,-) <él (Send + mSk”)>

V)V 3 Sl + 051 )ice).
(27)

Taking expectation and after some manipulations, it can
be shown that (Appendix A)
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Y] Jwi H 20’%
Di(e") = Vil(w)PyVi(w;) N

: <§] (i‘{)z |SkHV(wi)|2>.

Substituting this in (26), and using (21), we have
2 2
2 A b
AG| = [ ———— —
| 4] <27rd cos 0,-) Suu 2LN

' <,§, (;}Sz |SkHV(°’i)|2>- (29a)

(28)

=< A >2mz. (29b)

27d cos 0, 2L

Relationship to Spectral Music: Starting with the null
spectrum and using a first-order Taylor series expansion
of its derivative as in [12] and [7], an expression for the
mean squared error in the DOA estimate obtained using
Spectral Music can be obtained. It can be shown to be
exactly equal to (29). Hence, both Spectral and Root Mu-
sic have the same asymptotic mean squared error. How-
ever, implicit in the derivation of the mean squared error
for Spectral Music is the assumption that corresponding
to each source (signal zero) there is a peak in the spatial
spectrum [12], [7]. This, as explained in Section III, is a
stronger assumption than distinct z-plane roots, implying
that (29) is valid in the case of Spectral Music for smaller
errors. However, an idea regarding the effectiveness of
the spectral approach can be obtained by comparing (29)
and (24) [7]. Other than the factor (A /2xd cos 6,)°, the
remaining term in (29) is smaller than that in (24) by a
factor of 2L. For the other methods, it is usually a factor
of 2 [6], [7]. This implies that although, in general, Spec-
tral forms are less effective than Root forms, this is more
so for MUSIC. Further evidence of this is provided in the
next section.

VI. ONE AND Two SOURCE CASE

Here we specialize the general expressions for the one
and two source case. They are compared to those obtained
for Least Squares ESPRIT. Least Squares ESPRIT is very
similar to the method in [3] except that instead of using a
Total Least Squares approach, a Least Squares approach
is used to estimate the state transition matrix [6]. For the
rest of the discussion, ESPRIT refers to Least Squares
ESPRIT. Also, the comparison to ESPRIT helps contrast
the two methods and provides additional support to the
superiority of Root-Music over the popular Spectral Mu-
sic algorithm in the case of a linear array.

One Source Case

For the case of a single source with power level P,
$ =LP, N\ =\ + 07, and §; = V(w,). In order to
evaluate (24), an expression for the sensitivity of MUSIC
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is needed. To obtain this we note thag
Vll.l(wl)PNVl(wl) = VIILI(("I)(I - Ps) Vl(wl)
= V[I.[(wl)(l - SIS’]i)VI(wl)

(L= 1)(L+1)
12 ’
Hence, the sensitivity of MUSIC is given by

P L B 12L
MUVl (@) PyVi(w) (L — 1)(L + 1)

As in [10], substituting for the terms in (23) for D(e™*),
and using (24), we have

MTIZ N 12L NoF(L - 1) 1207

1 = = .

Muo (L= 1)(L+1) [N(LP,) — L’PN
(30a)

Similarly from (29),

T A "6 ( a
Ae _ el n .
| "MU <27rd cos 01> L <LP1N> (300)

These expressions can be compared to those obtained for
ESPRIT in [6]

DU 203

)AZI|ES =~ LZPIN’ (31a)
and

— 7 A 1 o2

Al = ~ o

801 <21rdc0s01> L<LP,N> (31b)

Note that the mean squared error in the signal zeros for
ESPRIT [(31a)] is smaller than Root-Music [(30a)] by a
factor of 6. On the other hand, the mean squared error in
the DOA estimates of Root-Music is smaller [(30b)] than
that of ESPRIT [(31b)] for values of L greater than 6.
Noteworthy is the additional 2L, compared to 2 for ES-

PRIT, in the denominator of |A#, |3y compared to

| Az |A24U

Two Source Case

General conclusions are hard to make for the two source
case. To get further insights, we consider the situation of
two uncorrelated sources with equal power level P. For
the analysis, we will consider L >> 1, ASNR = PL/c}
to be large, and A = Lwd/\/g << 1, where w; =
(w0, — w)/2, and ASNR A << 1. |e|, where e =
VH(w,)V(w,), is also chosen close to one. The above
assumptions result in a scenario of high resolution in a
high-to-moderate signal-to-noise ratio environment. Sub-

stituting for the eigenvalues and eigenvectors, D(e’) can
be simplified [10]. A brief summary is provided in Ap-
pendix B. This results in

ﬁr 1[1 1

A ~ Sy~ . (32
“lwu = MU N | ASNR (ASNR)ZAJ (32a)
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Fig. 2. (a) pyy as a function of array length L. (b) py /L as a function of
array length L.

Similarly, for the mean squared error in the DOA esti-
mate, we have (Appendix B)

z AV Swlf 1
(a6, = ———>) 57 = + 15/
MU 2md cos §;) 2L N \ASNR ~ (ASNR) A’
(32b)

For the ESPRIT case, after some approximations, it was
shown that [6]

al-2_ 1 1.1 Lo,
“les = LT = [e] N ASNR 4ASNR " ASNRA®
L3 1 b1 33
T L1~ [e| N ASNRZAY (33a)
and
W_( A '3 1 1 1
e \2xd cos 6;) 2L 1 — |e| N ASNR*A*’
(33b)

A comparison of (32a) and (33a) suggests that we need
Sy to be of the order (3/L)(1/1 — |e|) for the mean
squared error in the signal zeros obtained by Root-Music
to be comparable to ESPRIT. A comparison of (32b) and
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Fig. 3. (a) Mean squared error of signal zero as a function of signal-to-
noise ratio (in dB): Root-Music versus ESPRIT (L = 8, N = 100, DOA
= 18°). (b) Mean squared error of DOA as a function of signal-to-noise
ratio (in dB): Root-Music versus ESPRIT (L = 8, N = 100, DOA =
18°).

(33b) suggests that we need Syy/L to be of the order
(3/L)(1/1 — |e]) in order for the mean squared error
in the DOA’s obtained by Root-Music to be comparable
to ESPRIT. Again note thie extra L in the denominator of
the expression for the mean squared error in the DOA of
Root-Music. Regarding the sensitivity of the MUSIC
method Sy, the following general observations can be
made. From (18), we have {{h]?> = |H(2)|, = 1 —
(M/L), and tends to one as L increases. This observation
is similar to that observed in the Minimum-Norm method
[15]. As in the Minimum-Norm case, this fact is very use-
ful in the reduction of sensitivity [15]. More quantita-
tively, the factor pyy, where pyy = 3SupL(1 — |e]),
determines the relative performance of the methods. If py,y
= 1, then the signal zeros of ESPRIT have a lower mean
squared error compared to Root-Music and vice versa. On
the other hand, pyy/L = 1, then the DOA estimates of
ESPRIT have a lower mean squared error compared to
Root-Music and vice versa. For the high resolution case,
i.e., |e| = 1, pyy through computer simulations [Fig.
2(a)] has been found to be independent of DOA and only
dependent on the array length L and the angular separa-
tion. For most values of L, p; was found to be greater
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Fig. 4. (a) Mean squared error of signal zero as a function of signal-to-
noise ratio (in dB): Root-Music versus ESPRIT (L = 24, N = 100, DOA
= 18°). (b) Mean squared error of DOA as a function of signal-to-noise
ratio (in dB): Root-Music versus ESPRIT (L = 24, N = 100, D0OA =
18°).

than 1, implying that the signal zeros of ESPRIT have a
lower mean squared error. On the other hand, py /L was
found to be less than 1 [Fig. 2(b)]. This implies that the
DOA estimates of Root-Music have a lower mean squared
error.

As in the one source case, although the estimates of the
signal zeros of Root-Music have a larger mean squared
error, the DOA estimates have a smaller mean squared
error. This is a result of the extra factor L in the denom-
inator of the expression for the mean squared error in the
DOA estimate. This is also true for the more general case

as evident by comparing (24) and (29). A large | Az;|* and

small | Ag;|? implies that the errors in the signal zeros have
a largely radial component. The largely radial nature of
the errors makes the peaks in the spatial spectrum less
distinct rendering Spectral Music less attractive. Locating
the roots, and using its angular location to obtain the DOA
as is done in Root-Music, is preferable.

VII. SIMULATIONS
In this section, some computer simulations are pre-
sented that were done to test the validity of the theory. In
all cases, there was very close agreement between theory
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Fig. 5. (a) Estimates of signal zero obtained from 200 trials for ESPRIT
(L =24, N = 100, SNR = 10 dB DOA = 18°). (b) Estimates of signal
zero obtained from 200 trials for Root-Music (L = 24, N = 100, SNR
= 10 dB, DOA = 18°).

and the computer simulations. Theory refers to the values
computed using (24) and (29).

Example 1: Here we examine Root-Music for the sin-
gle source case and compare it to ESPRIT. The param-
eters for this example are d/\ = 0.5, array size L = 8,
6, = 18°, and the number of snapshots N = 100. The
results for various signal-to-noise ratios are summarized
in Fig. 3(a) and (b). In all the figures, the mean squared
error (MSE) in decibels (10 Log (1 /MSE)) as a function
of SNR is shown. In Fig. 3(a), the MSE in the estimates
of the signal zeros obtained using ESPRIT and Root-Mu-
sic are shown along with the theoretical predictions for
Root-Music. As predicted by theory, ESPRIT is better.
Fig. 3(b) compares the MSE in the DOA estimates.
Again, as expected, Root-Music has a smaller mean
squared error. The theoretical predictions are also close
to those obtained by computer simulations.

Example 2: The parameters are the same as in Example
1, except that the array length is increased to 24, i.e., L
= 24. The results are summarized in Fig. 4(a) and (b).
The conclusions are the same as in Example 1. The su-
periority of using Root-Music for estimating the DOA’s
is further borne out by the results in Fig. 5(a) and (b).
These figures show a close-up view of the location of the
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Fig. 6. (a) Mean squared error of signal zero corresponding to source at
18° as a function of signal-to-noise ratio (in dB) for an 8 element array:
Root-Music versus ESPRIT (N = 100, L = 8, DOA = 18°, 22°). (b)
Mean squared error of DOA corresponding to source at 18° as a function

of signal-to-noise ratio (in dB) for an 8 element array: Root-Music versus
ESPRIT (N = 100, L = 8, DOA = 18°,22°).

estimated signal zeros 2; (200 trials) at 10 dB relative to
the desired signal zero indicated by a cross. Root-Music
results in a tighter cluster, and the error also has a largely
radial component.

Example 3: Here two uncorrelated sources with equal
power are considered. The parameters for this example
are L = 8, N = 100, and the DOA’s are 18° and 22°.
Fig. 6(a) and (b) summarizes the results of this experi-
ment. The theoretical results for Root-Music are also
shown in Fig. 6(a) and (b), and in general they are in good
agreement with the computer simulations. Fig. 6(a) also
compares the MSE in the estimate of the signal zero, cor-
responding to the DOA 18°, obtained using ESPRIT and
Root-Music. For L = 8, from Fig. 2(a), pyy = 9.86 im-
plying that ESPRIT will be better. This is supported by
the computer simulations. Fig. 6(b) compares the MSE in
the estimate of the DOA obtained using ESPRIT and Root-
Music. For L = 8, from Fig. 2(b), ppyy/L = 1.22 imply-
ing that ESPRIT will be slightly better then Root-Music.
However, from the computer simulations, Root-Music is
slightly better. This discrepancy can be attributed to the
optimistic assumptions, particularly regarding L being
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Fig. 7. (a) and (b) S(w) for MUSIC for six trials (N = 100, L = 8, SNR
= 6 dB, DOA = 18°, 22°). (c) Estimates of the signal zeros obtained
from the same six trials for Root-Music (N = 100, L = 8, SNR = 6 dB,
DOA = 18°, 22°).

large, that were made in arriving at the approximate
expressions (33a) and (33b). Fig. 7(a)-(c) illustrates the
usefulness of a rooting procedure as opposed to plotting
the spatial spectrum. Fig. 7(a) and (b) shows the plot of
the spatial spectrum for six trials, and the corresponding
zero locations are indicated in Fig. 7(c). It can be seen
that although the roots have been clearly resolved, the
plots of the spatial spectrum do not necessarily indicate
two distinct peaks.

Example 4: The same experiment as in Example 3 is
conducted except that the array size is increased to 24.
The results are summarized in Fig. 8(a) and (b). The the-
oretical and computer simulations are in close agreement,
and the conclusions are similar to those reached in Ex-
ample 3.

VIII. SUMMARY

In this paper, we have analyzed the asymptotic prop-
erties of the estimates obtained by using Root-Music. In
particular, closed-form expressions for the mean squared
error in the estimates of the signal zeros, and DOA’s, have
been derived. Simplified expressions are also presented
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Fig. 8. (a) Mean squared error of signal zero corresponding to source at
18° as a function of signal-to-noise ratio (in dB) for a 24 element array:
Root-Music versus ESPRIT (N = 100, L = 24, DOA = 18°, 22°). (b)
Mean squared error of DOA corresponding to source at 18° as a function
of signal-to-noise ratio (in dB) for a 24 element array: Root-Music versus
ESPRIT (N = 100, L = 24, DOA = 18°, 22°).

for the one and two source case, and compared to those
obtained for Least Squares ESPRIT. Computer simula-
tions were also presented, and they are in close agreement
with the theory. An important outcome of this analysis is
the fact that the error in the signal zeros had a largely
radial component. This provided an explanation as to why
Root-Music is superior to the (Spectral) MUSIC algo-
rithm.

APPENDIX A

Here we simplify (27) and derive an expression for the
mean squared error in the DOA estimate. Starting from
@7,

D?(e™)

M 2
2 Re <V{i(wi) kgl (Send + mSH) V(wi)>
M
+ 2 (V) T (sl + nSHHV(@)

M
- V(@) lgll (S + WISF)VI(‘*’)‘)>

2ReT; +2Re T>.
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Taking expectations of both sides,

D¥(e") =2ReT, + 2Re T. (A1)

It can be shown that 7, = 0 and that 2 Re 7, reduces to
(28). Here we will only show the manipulations as related
to T,. The proof of T; = 0 is similar. To simplify the
notation, we will use V and V|, to denote V(w;) and
Vi(w;), respectively.

T,

Il

2_41 ,E ((VISenl'V + VinSiv)

- (VimS{vy + vismi'v))
M M
2 2 (Visalvvinsiv,

+ ViSindvvHsmiv,
+ Vi SEvvigsiv, + V{!nkaVVHSITIIHVl)-

Taking expectations of both sides, and using (6) and (7),
we have

T,
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Cancelling out the common terms results in
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The last equality is a result of the orthogonality of V and
the noise subspace, i.e., (12). The above expression then
can be further simplified as shown below.

M )\ 02
T o H Nk n
T, <|SkV[ 145 N——()\ 27 PNV1>
k — Un

It

(A”{)z |st|2>- (A2)

Substituting (A.2) in (A.1) results in (28).

M
(V{’PNV.)‘—’é 2
N \ k=1

APPENDIX B

The expressions necessary to specialize (24) and (29)
for the case of two uncorrelated sources with equal power
P are considered here. It can be shown that the eigenval-
ues and eigenvectors are [10]

u+ 0
=)

~/2(

and S],(z) = |6‘

N = PLL+ )

where

eI L= sin (Lw,)

=y V
(0)1) (O)z) sin (wd)

with wy = (w; — w;)/2, and U; = ¢ UETD/2eip gy,
=1, 2. If we assume that (Lwd)2 << 1, then

= o JE=Duu |
€= { 6 120

—1L22+LL4 :|

For the high resolution case |e| = 1, and it was shown
in [10] that 1 — |e| = (A?/2),

A

|stv(e)[ =1, and |SEV(w)| =

Substituting these relationships in (24) and (29) results in
(32a) and (32b).
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