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The major time and frequency analysis methods that have been
applied to music processing are traced and application areas
described. Techniques are examined in the context of Cohen’s
class, facilitating comparison and the design of new approaches.
A trumpet example illustrates most techniques. The impact of
different analysis methods on pitch and timbre examination is
shown. Analyses spanning Fourier series and transform, pitch
synchronous analysis, heterodyne filter, short-time Fourier trans-
form (STFT), phase vocoder, constant-Q and wavelet transforms,
the Wigner distribution, and the modal distribution are all cov-
ered. The limitations of windowing methods and their reliance on
steady-state assumptions and infinite duration sinusoids to define
frequency and amplitude are detailed. The Wigner distribution, in
contrast, uses the analytic signal to define instantaneous frequency
and power parameters. The modal distribution is shown to be
a linear transformation of the Wigner distribution optimized for
estimating thoSe parameters for a musical signal model. Ap-
plication areas consider analysis, resynthesis, transcription, and
visualization. The more stringent requirements for time-frequency
(TF) distributions in these applications are compared with the
weaker requirements found in speech analysis and highlight the
need for further theoretical research.

I. INTRODUCTION

A physical example, such as a whistle, is useful when
first learning the concept of frequency. The teacher purses
his lips, blows once, changes the position of his tongue,
and blows again. One hears two sounds, a low-pitched
followed by higher-pitched whistle, and is told that the
power spectra of these two signals differ in that the first
sound concentrates the distribution of its acoustic power
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in the neighborhood of a frequency substantially lower
than that of the second. Thus the mathematical expression
f1 < f2 is learned through our everyday experience of pitch,
ie., the lower the frequency, the lower the pitch.

The lesson may be good engineering pedagogy but it is
definitely very poor music processing: actual power spectra
of the whistles reveal that both signals are wideband and
that the power in each whistle sample w;(¢) is concentrated
in the neighborhoods of an ordered set of isolated frequen-
cies, {in)fib Y sz}s for ¢ = 1>2’ where fz] < fi,j+l
for all < and j. Musical acoustics refers to this set as the
instrument’s partials and in certain cases, such as a good
“whistleblower,” the partials are harmonically related to a
fundamental as in the relationship f;; = jfio for all > 0.
Thus the partials in a harmonic set are integer multiples of
the fundamental, f;o.

The above correspondence between frequency and pitch
is identical only for monochromatic signals, e.g., sinusoids,
such as those generated by an oscillator for which the set
of partials consists entirely of one frequency, {fo}. When
comparing the pitch of instruments with many harmonics,
their fundamentals, rather than their wideband set of par-
tials, determines the pitch so that, in general, the lower the
fundamental, the lower the pitch. That we are sensitive to
the harmonic relationships among partials is reinforced by
the phenomenon known as the “missing fundamental”’; even
when the fundamental is absent from the set of harmonics,
we hear it as if it were present [1].

When discussing musical signal processing, we must
always be aware of the differences between the mathematics
of representing an acoustic signal and our auditory percep-
tion of that signal. To ignore these differences discounts the
interesting phenomena of our auditory perception. What,
after all, is more mathematically elegant than to represent
the pitch of a whistle using the basic unit of our Fourier
mathematics, frequency! But how interesting to discover
that it is not the frequencies of the partials per se, but their
relationships, that we perceive as pitch; only when these are
lacking, as in the case of a single sinusoid, is our Fourier
mathematics adequate to represent the pitch that we hear.
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The inadequacy of Fourier mathematics to succinctly rep-
resent perceptual phenomena of musical signals motivates
the theory of time-frequency (TF) representations. The
whistle provides a case in point. Rather than two distinctly
pitched events, suppose the instructor had slowly varied
the volume of the vocal cavity from large to small while
blowing, thereby creating a whistle whose pitch varied over
time. A Fourier representation of this event is inherently
flawed, lacking the element of time, in contrast with the first
case where the representation preserves the relationships
among the partials which form the whistle’s unchanging
pitch. Indeed, a power spectrum of the temporally varying
pitch reveals that the well-known utility of the Fourier
mapping of functions of time into ones of frequency is
precisely not what we want when representing signals
which change in their pitch over time, since what we hear
suggests a representation in both time and frequency. Ignor-
ing pitch for the moment, a time-variant whistle beckons
a three-dimensional (3-D) plot that represents frequency,
amplitude, and time. As we shall argue in Section II, the
discipline of TF representation is a mathematical response
to the need for such mappings in representing our auditory
response to acoustic signals.

The use and advancement of such a theory in musical
signal processing reflects our interests in quantifying the
properties of those signals we call music so that we may
better understand the processes involved in the generation
and appreciation of music. Such interplay between mathe-
matics, engineering, physics, psychology, and aesthetics is
not new; the history of music signal processing dates well
into antiquity. Indeed, many mathematical physicists have
created their systems, in part, in response to their fascination
with music. From the fundamental relationships among
length, vibration, and pitch established by Pythagoras to
the development of partial differential equations in the
19th century by Helmholtz, Rayleigh et al., music has
provided a wealth of inspiration to what we now consider
to be standard engineering mathematics and physics. It
is our belief that music has helped carve out our cur-
rent understanding of and need for TF distributions, as it
has for centuries. Through a confluence of technological,
theoretical, pedagogical, and economic factors, over the
next decade researchers will be able to add new layers of
mathematics to the substrates that music provides.

The primary scope of the present paper is limited to
a discussion of TF distributions in music processing. We
argue that current work in this area is best understood when
presented in the historical context of the research problem.
Within this development, Section II establishes a common
framework for various analysis techniques, and covers one-
dimensional (1-D) methods which predate the use of joint
time and frequency variables. Section III continues with
the application of joint TF analysis to musical signals.
Throughout this historically oriented development, we will
use one particular acoustic source as the example by
which we illustrate the evolution of our ideas of musical
instruments from the “steady-state” notions of Helmholtz
to the “dynamic time-varying” constructs of the past two
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decades. While no one instrument can best exemplify all
mathematical models, the trumpet sample we have selected
possesses many musical source features that reveal the
pitfalls of various mathematical representations.

In Section IV, we widen the scope of the presentation to
discuss the variety of applications, building upon analysis,
that presently drive music processing. There are numerous
parallels between this and speech processing. We summa-
rize these correspondences at a relatively high level.

1. TME-FREQUENCY DISTRIBUTIONS: HISTORICAL
PRECURSORS IN MUSIC PROCESSING

We introduce a common mathematical framework for
representing the fine temporal and spectral structure of
musical signals. This enables us to directly compare rep-
resentations starting with that of Helmholtz, and rang-
ing through common Fourier techniques, to more recent
techniques such as wavelets and bilinear transforms. In
this framework we see the historic problem faced by all
these approaches to music analysis concerning pitch and
timbre, which debates the dual spectral and temporal views
of the signal. We consider a trumpet sample from the
McGill University Master Samples of individual notes on
compact disc [2] and view it in the context of the various
distributions ‘we cover. This sample contains the attack
and the initial steady state of a note with a pitch of 185
Hz.! Tt illustrates spectral components with rapidly varying
frequencies and amplitudes which highlight the ability of
various representations to capture such information.

A. Generic Mathematical Form

The generic form that we propose for comparing musical
signal representations is a joint distribution of signal energy
over time and frequency. The term distribution, in this
context, is applied to purely deterministic signals and
refers to an intensity per unit time and frequency, rather
than any probabilistic interpretation. A musical signal is
given as a function of time, with frequency and energy
variables chosen for the useful information that they provide
in our context, and because most of the distributions
that we consider can be written in these terms. Many
of the distributions, such as the Fourier series (FS) and
Fourier transforms (FT), and constant-() transforms, have
coefficients which are converted to units of energy by
computing the squared magnitude. Others, such as the
Wigner distribution (WD) and modal distribution (MD),
possess coefficients which already have units of energy.
Thus an energy function provides a common basis for
comparison. It is also a natural variable for analyzing the
physics and psychophysics of musical sources, and is useful
in resynthesis.

The majority of the two-dimensional (2-D) systems for
depicting musical signals that we consider have frequency

IThe note chosen is six semitones below middle C, where middle C
has a pitch of 262 Hz. which is sometimes designated F#3. It is taken
from Volume Two, Track 16, Index One of the McGill University Master
Samples.
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as an independent variable. Those that do not can typically
be recast as functions of frequency or given a frequency
interpretation. The wavelet transform, a function of time
and scale, provides an example of this. It has been shown
[3]. [4] that a wavelet transform has a corresponding fre-
quency interpretation, with the frequency varying inversely
to the scale. Thus a frequency variable encompasses all of
the analysis methods that we consider, and combined with
time and energy, defines a general framework in which
to compare and design suitable. representations for musical
signals.

The work of Wigner [5] in the probabilistic context of
quantum mechanics laid down the framework upon which
TF representations were later refined. Ville [6] subsequently
derived a deterministic TF distribution which was formally
analogous to Wigner’s. The Wigner—Ville distribution of a
signal s(t) is given by

Ws(t,w) = 57; /_0:0 s(t + %)s* (t - %) exp(—jwr) dr.
ey

Early fundamental work on TF distributions was also done
by Gabor [7], Page [8], et al. In his historical review of the
subject, Cohen [9] says:

Although it is now fashionable to say that the mo-

tivation for this approach is to improve upon the

spectrogram, it is historically clear that the main

motivation was for a fundamental analysis and a

clarification of the physical and mathematical ideas

needed to understand what a time-varying spectrum
is.

These pioneers’ work was further built upon by Cohen,
who realized that an infinite class of TF distributions,
including those of interest to us, could be obtained from
the Wigner—Ville distribution by linear transformation {10].
One expression of this linear relationship is

Cs(t,w; p)
- / / Wa(r,€)p(t — Tw — E;t,w) dr dE (2)

where C(t,w;p) is a member of Cohen’s class, and
@(r,&;t,w) is called the kernel of the distribution [11].
Cohen showed that the kernel, an arbitrary function which
defines the particular linear transformation in (2), is simply
related to many important properties of the distribution,
and thus can be used to test or constrain those properties.
We choose Cohen’s class as our framework because it
forms a basis for both the quantitative analysis of existing
distributions in musical signal processing and the design
of new ones with desirable properties.

Alternatives classes such as the affine class of energy
functions of time and scale [4] provide a less appropriate
context for our work. A frequency variable is more directly
related to auditory pitch and more commonly used in
musical acoustics and synthesis than the scale variable,
and these are important potential applications for the results
of musical signal analysis. Furthermore, most of the com-
monly used musical signal analysis techniques are included
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in Cohen’s class, but not the affine class. The constant-Q
and windowed exponential wavelet transforms, among the
few musical signal analysis techniques which do exhibit

- scale properties, may also be interpreted as functions of

frequency [3], -[4]. These transforms can also be cast in
Cohen’s class by exploiting the often-ignored contingency
for frequency dependent kernels in Cohen’s class [9], [11],
and identifying scale with the inverse of frequency. Thus
Cohen’s class is clearly the more inclusive choice for our
work.

B. Helmholtz and the Fourier Series

Helmholtz [12] built upon the concepts of Fourier, Bun-
sen, and Ohm. While it was Fourier who first developed
the theory of complete orthonormal expansions of signals
as sums of sinusoids, the driving force behind this develop-
ment had little to do with what we now call Fourier analysis
and much more to do with the .operational properties of
the transform as the tool for solving certain boundary
value problems in partial differential equations [13]. It was
Bunsen who saw in the mathematics of the Fourier theory
a means for decomposing signals into sums of “simpler
signals,” and Ohm who, in his acoustic law, proposed that
the auditory system extracted the amplitudes of these same
simple signals when perceiving acoustic signals [1].2

Though Helmholtz knew that musical sounds varied over
time, generally containing attacks and decays, he believed
that the salient portion from a perceptual standpoint was
nearly periodic, and called it the steady state. The FS
theory states that repeating or periodic. functions can be
broken down into a sum of sinusoidal components [14]. The
repetition rate defines a fundamental frequency, with all of
the sinusoidal component frequencies, called harmonics, at
integral multiples of the fundamental frequency.

Helmholtz believed that the magnitudes of these har-
monic components determined loudness, pitch, and timbre,
which he considered to be the primary perceptual attributes
of individual musical sounds. The pitch was defined as
the single sinusoidal frequency which a complex tone is
perceived as most similar to, while timbre accounted for
all differences in perception outside of loudness and pitch.
Though loudness is now fairly well understood, even today
the investigation of pitch and especially timbre is far from
a closed subject, and these are still considered primary
perceptual attributes of musical tones. Helmholtz believed
that pitch was determined by the fundamental frequency
of the harmonic series, and timbre was determined by the
pattern of magnitudes of the remaining components. His
limited spectral analysis tools, including acoustical cavity
(Helmholtz) resonators, tuning forks, -and reeds, provided
some information about the amplitude and frequency of
harmonic components, but no information about the time
varying nature of the sound.

While Helmholtz’s analysis techniques estimated com-
ponent amplitudes and frequencies directly, the closest

20hm’s acoustic law is not the same as the more famous of Ohm’s
laws relating electrical quantities.
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mathematical technique is the FS, which he relied upon
as the theoretical basis for his analysis. The FS coefficients
for the periodic signal s(t) with fundamental frequency wo
are computed with the following integral over one period
of the fundamental frequency

wo 7 [wo

S(n) s(t) exp(—jnwot) dt 3)

2 —mJwo
where n refers to the harmonic number [14]. Thus the FS
is a function of a discrete set of harmonic frequencies only,
computed based on a single period of the signal, and is not
a function of time. In the case of musical signals which
are not strictly periodic, an average or estimated pseudo-
period is sometimes used in the computation [15][16],
but then the conclusion that the signal contains strictly
harmonic components is no longer assured, and (3) becomes
more difficult to interpret. The energy at each harmonic is
obtained by computing the magnitude squared |S(n)|?, or
power spectral density, of the FS coefficients.

To place the FS power spectral density in the Cohen’s
class framework, we note that it is a function of frequency
only, and therefore comparable to the frequency marginal
Pg(w). The frequency marginal is obtained from a distribu-
tion by integrating out the time variable [9], leaving a 1-D
distribution given by

oo
P,(w) = / Cy(t, w; p) dt. “)
The frequency marginal in (4) is sampled at the discrete
frequencies nwy to compare it to the power spectral density
|S(n)|2. Fig. 1(a) illustrates the power spectral density of
a FS analysis from sampled data, showing the first 20
harmonics of the trumpet note described at the outset of this
section, with pitch and approximate fundamental frequency
of 185 Hz. The 5.4 ms (1/185) segment starts 500 ms
following note onset, where the steady state portion begins.
The individual periods of trumpet samples are generally
very impulsive, with the result that the sample contains
many harmonics, extending beyond the plot in Fig. 1(a) to
50 harmonics in many cases.

If the frequency marginal of a distribution matches the
power spectral density, the distribution is said to satisfy
the frequency marginal. All else being equal, this is a
desirable property for a distribution, because it means that it
is consistent with that power density. In practice, however,
this property trades off against other desirable properties,
and most of the distributions in common use for musical
signal analysis do not satisfy the frequency marginal. The
WD does satisfy its frequency marginal [17], lending to its
special status in Cohen’s class.

The Helmholtz analysis raises the question of whether
spectral analysis based on a single period fully accounts for
the perceptual attributes of even individual musical notes.
It is now understood that the attack portion of a musical
tone is important to correct instrument identification [18].
Both pitch and timbre are known to depend upon joint
temporal and spectral characteristics of the signal {18],
[19]. Furthermore, strict periodicity generally does not
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hold even during the steady state, and thus the component
magnitudes computed over a single period give at best an
incomplete representation. Additionally, during segments
of rapid change such as attacks, the FS gives inaccurate
estimates of magnitude and frequency even for a single
time [20]. Thus while Helmholtz’s research accomplished
a great deal given the available techniques, it only opened
the door to a much richer set of questions concerning the
joint role of time with frequency.

C. Long-Term Spectrum Analysis and
Wideband Envelope Analysis

The spectral composition of the entire signal s(¢), rather
than just one period, can be obtained by the FT [14]. This
is computed by

1 [~

S(w) = — / s(t) exp(—jwt) dt. )
27 J_ oo
Here the power spectral density is the magnitude squared
|S(w)|? over the continuous frequency variable w. While
this provides information over more frequencies and about
a longer time interval than the FS, it still lacks temporal
information about any additional spectral content. The
power spectral density of the FT is, like the FS case, most
directly comparable to the frequency marginal for Cohen’s
class computed in (4). Fig. 1(b) shows part of the FT power

“spectral density of our trumpet sample, displaying the

frequency region of the 16th—19th harmonics, which may be
compared to the 20 harmonics in Fig. 1(a). In the FT case,
the entire 500 ms of our sample is analyzed, rather than just
a single 5.4 ms period as in Fig. 1(a), with the inclusion
of the attack and other nonstationarities contributing to the
additional spectral content between harmonic frequencies
which appears in Fig. 1(b).

We have pointed out that the FS and transform lack
information about the distribution of signal energy over
time. A 1-D view of temporal variation is provided by
the instantaneous power |s(t)|%. Instantaneous power cor-
responds most directly to the 1-D time marginal of a 2-D
Cohen’s class distribution, obtained by integrating out the
frequency variable in

ps(t) = f_ Ci(t,w; 9) dw. (6)

Paralleling the case with the frequency marginal, we say
that a distribution satisfies its time marginal if that function
is equal to the instantaneous power. Most distributions
used for musical signal analysis do not satisfy their time
marginals. Again, the WD does, providing another reason
for its central role in Cohen’s class. Just as the power
spectral density gave no information about how the signal
energy is distributed over time, the instantaneous power
provides none over frequency.

The instantaneous power of our trumpet sample is dis-
played in Fig. 1(c), calculated over 17 periods from 75
to 165 ms into the sample. This plot reveals that the
sample is not strictly periodic, even during the latter steady
state portion. The FS spectrum in Fig. 1(a) was taken over
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Fig. 1. One-dimensional, time, or frequency-only views of a trumpet signal: (a) FS analysis of
one period, showing the first 20 components, (b) FT of the entire attack, showing the 16th—19th
components, and (c) instantaneous power of the attack over ~ 100 ms, encompassing 17 periods.

one period late in this sample, while the FT in Fig. 1(b) signal is important in the context of time-varying signals,
was taken over the whole sample. An alternative approach and is elaborated later. :

to analyzing the power trend uses the envelope of the A number of perceptual attributes of music are related
sample, which encloses the instantaneous power peaks. The to instantaneous power, such as amplitude vibrato, and the
envelope of a signal or of an individual component in that slope or shape of the attack and decay of a note. Even
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though the instantaneous power lacks spectral information,
a number of theories of pitch perception are based on
strictly temporal information [19], [21]. These measure the
period between similar peaks in the time signal, and help
account for ambiguities in the pitch of complex tones where
several competing pitch percepts may sometimes be heard.

III. APPLICATION OF TF METHODS TO
MUSICAL ACOUSTICS

The analysis perspectives described in Section II give
insight into the distribution of musical signal energy with
respect to time or frequency individually, but a joint func-
tion of these two variables is needed to provide a complete
picture. A number of attempts were made in the 1950’s
and 1960’s using analog techniques [22]-[26], but these
had inherent limitations in accuracy and mathematical flex-
ibility. The digital electronic era greatly reduced these
obstacles, leading to two lines of research to construct
such distributions. One focused mainly on applications,
and adapted existing frequency analysis techniques for
a single time interval to provide temporal information.
Concurrently, the work of Wigner, Cohen, and others
previously mentioned concentrated on the theoretical issues
involved in constructing such joint functions. In this section
we review the former techniques first, describing how
these TF analyses were and are applied to musical signals.
We then look briefly at a Cohen’s class approach which
uses the estimation of the parameters of a musical signal
model as its focus, combining the flexibility of this general
framework with the particular requirements of the musical
signal analysis application.

A. Time-Varying FS Extensions

The first line of research that we review takes the static
spectral analysis of FS and transform techniques, and adapts
them to provide time-varying information; an approach with
inherent limitations. FS and transforms analyze signals by
decomposing them into a sum of sinusoids each having
constant frequency and amplitude. Time-varying adapta-
tions assume that the frequencies and amplitudes of the
signal are nearly constant over limited time intervals, and
then spectrally analyze successive intervals as if each is
stationary. The assumption of stationarity over an interval
is in fundamental conflict with the concepts of instantaneous
frequency and amplitude needed for time-varying signals.

Techniques which extended static frequency analysis
methods were often first developed for the analysis of
speech signals, and later applied to music, which has related
characteristics such as quasiharmonic structure and pitch.
This included time-varying extensions of FS techniques.
Mathews and his colleagues [27] developed the technique
of pitch synchronous analysis of speech, which applied a
running FS analysis whose period changed based on an
estimate of the changing fundamental frequency. Luce [15]
was among the first to apply such techniques to musical
tones.
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Luce analyzed 14 orchestral instruments using a running
FS analysis similar to Mathews’. In Luce’s approach,
proposed by M. ‘Clark, musical notes are digitized and
then low-pass filtered to isolate the fundamental frequency,
whose changing value is estimated by counting zero cross-
ings. A FS analysis is then performed on successive pseudo-
periods, whose lengths are based on those estimates. The
FS in (3) is applied for fundamental periods spanning
successive times ¢, and the running phases computed using

Pi(n) = atan(i{i—i%%) @)

where R and & are the real and imaginary parts of the
complex coefficients Si(n). Since the signal is generally
not perfectly periodic, the harmonic frequencies vary from
integral multiples of the fundamental, and their value is
estimated from the coefficients by looking at the change in
phase between periods to apart, rather than by assuming
them to be multiples of the fundamental as a FS analysis
normally does, as given by

@i(n) = fiﬁ'l@:m‘ ®)

to

The magnitudes of the harmonics are computed at each time
by |S¢(n)|?. Those magnitudes do not take into account
the improved frequency estimates in (8), but correspond
to the strictly integer multiple harmonic frequencies nwy,
resulting in errors.

Luce and Clark [28] applied Luce’s analysis data to the
additive resynthesis of brass instruments. Luce’s analysis
technique had flaws, including sampling the high frequency
content of the signal too slowly, and this affected the
quality of the resynthesis. Strong and Clark [29] also
performed additive resynthesis, utilizing most of the brass
and woodwind data collected by Luce. These studies and
those that follow by Mathews et al. involved subjective
testing which confirmed the importance of the time-varying
signal content, and particularly the attack, in instrument
recognition and timbre.

Luce and his coworkers noted a phenomena in analyzing
brass instrument attacks which they called “blips,” cor-
responding to brief amplitude peaks early in the attack.
Resynthesis showed that the blips were important to a
realistic brass sound, but the authors were unable to explain
why the blips occurred or whether they were artifacts of
the analysis. We will see that this is due to the limitations
of their methods. Strong and Clark [29] comment on the
difficulty in interpreting a periodic representation of a signal
which is not strictly periodic.

Mathews and his colleagues subsequently followed up
their earlier speech analysis efforts with pitch synchronous
analyses of musical tones, avoiding many of Luce’s prob-
lems. Risset and Mathews [30] used this technique to
analyze and resynthesize the trumpet. Their data showed
the same transient rises in components during the attack as
Luce et al., though they did not refer to them as blips.
They also observed some shifting in frequency during
the attack, and a delay in the onset of higher frequency

1221



components, showing a limited ability to track frequency
variations, but did not note any relationship between the
frequency and amplitude shifts. Mathews and Kohut [31]
used pitch synchronous analysis to study the violin. Their
study indicated that a complex time-varying interaction
between the string frequency and closely spaced violin
body resonances contributed to the timbre of the instrument,
another example of the role of joint TF analysis in timbre
research.

The pitch synchronous analysis technique just described
has two primary weaknesses for time-varying signals. When
(3) computes the coefficient of a particular harmonic n for
the perfectly periodic signals required of a true FS analysis,
all other harmonics are perfectly canceled. However, if the
signal is not perfectly periodic, other components are not
perfectly cancelled [20]. Furthermore, in the ideal harmonic
component case, each component is multiplied by a gain of
one in the analysis and its amplitude estimated correctly.
However, if it is not exactly harmonic, then it is multiplied
by a gain less than one and underestimated [20]. Signals
which vary rapidly in amplitude and frequency, common
during an attack, are subject to these types of errors.

Beauchamp developed an extension of pitch synchronous
analysis which partially dealt with the leakage problem
cited above. Equation (3) implicitly corresponds. to mul-
tiplying the signal s(¢) by a rectangular window of length
ty = 2m/wg, which is one period of the estimated fun-
damental frequency, and then computing a FT at only
harmonic frequencies. Beauchamp [20] proposed changing
this to a Hanning [14] window which is 2ty = 47 /wg
long (ie., two periods). This window more effectively
suppresses leakage from other components when they are
not at exact harmonic multiples. However, the problem
of gain distortion- when the component is not an exact
harmonic is slightly worse with the Hanning window.
There is also a sacrifice in time resolution relative to pitch
synchronous analysis with a rectangular window, because
the parameter values are estimated based on an average over
a longer time. The Hanning window is also not effective
against leakage from components which are less than a
harmonic multiple apart or which shift in frequency so
rapidly that a ‘meaningful estimate of the period is not
possible. Beauchamp applied a variation of the Hanning
window extension of pitch synchronous analysis to a major
study. of violin tones, further supporting Mathews and
Kohut’s conclusion that string vibrato interacted with a
sharply peaked violin body filter characteristic to produce
the violin’s timbre [32].

The heterodyne filter is a variation on Beauchamp’s
method, and uses a single period rectangular window as
with pitch synchronous analysis, but adds post filtering to
the output to give an overall result similar to Beauchamp’s.
Moorer [33] described the heterodyne filter in his thesis
work on automated music transcription, and subsequently
collaborated with Grey in a study of musical timbre using
it [34]. Their study confirmed the important role of attack
transients, including frequency and amplitude changes of
individual components, in the perception of timbre. In
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a related paper with Strawn, they specifically note ‘the
presence of Luce’s “blips” in the trumpet attacks they
analyzed [35], and note that the blips often occur as the
frequency of a component ‘stabilizes. :

B. Time-Varying FT Extensions

Another adaptation of a static spectral analysis technique
which originated with speech work and was later applied
to music is the short-time:Fourier transform (STFT) and
the related phase vocoder. Paralleling extensions for FS to
time-varying signals, the STFT is a time-varying extension
of the FT. The STFT applies a sliding window h(%) to the
FT in (5) to give

Stw) =0 [ SOt - Oexpl(—jue) de. ©)

The sliding window- isolates a short segment of the signal
for Fourier analysis, thus prov1d1ng frequency information
as a function of time.

The phase vocoder converts the STFT coefficients to a
magnitude function |S(#,w)|? and a phase function anal-
ogous to (7) for the FS. The phase vocoder was first
developed by Flanagan and Golden [36] at Bell Labs for
coding speech signals. Shafer and Rabiner [37] studied
the STFT for the analysis and synthesis of speech. A
number of important improvements to the phase vocoder
and STFT involving theory, computational efficiency, and
applications, were developed by Portnoff [38]-[40]. Dolson
[41] developed a version which tracked the fundamental
frequency of a musical tone. He also analyzed the relation-
ship of the parameters computed by the vocoder with the
instantaneous magnitudes and frequencies of the analytic
signal. This is an important comparison because the analytic

signal leads to. a well-defined concept of time-varying -

frequency and amplitude. Strawn [42] used a version of the
phase vocoder which predated Dolson to analyze musical

transitions between notes, thus revealing another time-
variant spectral characteristic which contributes to timbre-

perception.

The extended FS techniques described earlier are tech-
nically a subset of the STFT and phase vocoder methods
where the window length is restricted to a multiple of the
signal’s fundamental period (usually one or two periods)
and coefficients are only computed at multiples of the
fundamental frequency. The' extended FS windows gen-
erally have short time spans relative to the requirements
of musical signal analysis. For example, middle C has
a period of about 4 ms, near the minimum threshold of
about 1 or 2 ms below which humans cannot hear temporal
variations in components [43], and therefore analysis with
a single period window provides excellent perceptual time
resolution. A note with a pitch two octaves below middle
C (period of about 15 ms) still affords relatively -good
temporal resolution when analyzed with a single period
window.

PROCEEDINGS OF THE IEEE, VOL. 84, NO. 9, SEPTEMBER 1996




A rectangular window one fundamental period long has
a bandwidth® in the frequency domain equal to twice the
fundamental frequency, and when centered over a particular
harmonic, its zero crossings occur exactly at the two
adjacent harmonics, passing only the particular harmonic.
Other extended FS windows have similar characteristics.
Thus any broadening of the bandwidth of harmonics from
the FS line spectrum assumed in Fig. 1(a), such as indicated
by the FT in Fig. 1(b), causes leakage into the particular
harmonic under analysis. The STFT and phase vocoder
allow the use of longer windows, with narrower bandwidths
to reduce leakage, but require time durations which may
be long relative to audible temporal changes. The . trade-
off between window length and bandwidth is due to the
minimum time-bandwidth product of the windows used in
STFT’s and extended FS methods, referred to as a version
of the uncertainty principle* [44], [45].

STFT’s and the related phase vocoder and extended
FS methods are all represented in Cohen’s class by their
squared magnitudes. The kernel for computing these TF
distributions using (2) is the WD W (¢, w) of the window
function h(t) [11] or

olt, w) = Wi(t,w): (10)

Thus h(t) is a rectangular window one period long for a
pitch synchronous analysis, a Hanning window two periods
long for Beauchamp’s technique, and includes a much
broader class of windows for the STFT or phase vocoder. In
the case of the extended FS methods, the frequency values
at which the magnitude is computed using (2) are restricted
to multiples of the fundamental frequency w = nwy. The
WD of a signal satisfies its marginals, and thus when the
kernel in (10) is used in (2), since the resulting linear
transformation of the signal’s WD spreads the signal energy
over a larger region of the resulting TF distribution, reflect-
ing the uncertainty principle requirements, the marginals
are no longer satisfied. Therefore such time-window based
distributions never satisfy both of their marginals.

Fig. 2(a) and (b) illustrate the application of an extended
FS technique in two steps to our trumpet sample, showing
the 16th—19th harmonics between the 80-400 ms points,
spanning the duration of the attack. The magnitude squared
of a STFT using a Hamming window two periods long
(10.8 ms) of the average 185 Hz fundamental frequency
is calculated first and shown in Fig. 2(a). The bandwidth
of the extended FS window used in this case is 370 Hz, or
two harmonic intervals, and because the components do not
form a line spectrum, as shown in Fig. 1(b), the window
creates leakage between them. The FS magnitude values
versus time are obtained by sampling this distribution in
frequency at multiples of 185 Hz, as shown in Fig. 2(b). We
will see that these components actually change frequency

3This is the bandwidth of the main lobe of the rectangular window’s
spectrum [14].

4The uncertainty principle has no probabilistic interpretation here, and
simply describes how window bandwidth varies inversely with length,
where a certain product of these factors has a fixed minimum.
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Fig. 2. Extended FS analysis applied to 16th—-19th components
of a trumpet attack (same signal as Fig. 1) over 300 ms time span,
shown in two stages. (a) Application of the extended FS window
showing frequency averaging due to wide bandwidth. (b) Harmonic
interval sampling of (a) for final result, which does not track true
component frequencies, and therefore distorts magnitudes.

over time, and thus this fixed sampling results in biased
estimates of magnitude.

Fig. 3(a) illustrates the application of the more general
STFT case to the same time and frequency range of our
trumpet sample as Fig. 2(a) and (b). A longer, 188 ms
Hamming window is utilized, whose narrower bandwidth
avoids leakage between components. The STFT is also
computed at a finer sampling of frequencies than the
extended FS techniques, avoiding the bias of magnitude
estimates in Fig. 2(b) which result from failure to follow the
frequency shifts that are apparent in Fig. 3(a). However, the
longer window averages the attack over a duration which
is significant relative to the temporal resolution of human
hearing and to the rate of change of this signal, which
generates bias in estimating both magnitude and frequency.

A variation of the STFT which changes the window
length as a function of frequency so that a constant number
of periods are within the window at each frequency is
the constant-Q) distribution. Youngberg [46] explored the
constant-Q) transform for general acoustic signal analysis.
Brown [47] applied the constant-@) transform to music,
motivated by the fact that the geometrically distributed
frequency resolution that it provides mirrors the structure
of musical scales. The constant-@ transform is computed
by contracting the STFT window in (9) with frequency to
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Fig. 3. Comparison of smoothing extremes of standard tech-
niques applied to 16th—19th components of a trumpet attack (same
signal as previous figures). (a) STFT of first 500 ms, showing
smoothing and resulting bias required by the uncertainty principle.
(b) PWD of 8 ms from the middle of the attack, with no smoothing
in time, giving high resolution but allowing cross products to
remain.

match the contraction of the complex exponential as given
by

5%tw) = 5 [ s(@h((t - f)i) exp(—jwe) de

T J—co wo
an

where wy is a reference frequency at which the window
is unaltered. The squared magnitude of the constant-Q
transform is obtained in Cohen’s class by using a frequency
scaled window h(t(w/wp)) to produce a kernel which is
explicitly frequency dependent via (10), a variation on the
STFT case. While this produces a constant-Q transform
which has a local bandwidth proportional to frequency,
providing a better fit for some applications by paralleling
their structure, it remains bound by the uncertainty principle
like any other time windowing method.

Equation (11) for the constant-() distribution is also a
type of wavelet transform. Daubechies’ [48] research laid
much of the theoretical foundation for wavelet transforms,
which are obtained by decomposing signals into dilations
and translations of a mother wavelet. If the window and
complex exponential in (11) are combined for a particular
frequency wy,, a useful wavelet for musical signal analysis
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is obtained

w<f> = h<f> exp (—jfwm). (12)
a a . a

The scale variable a used to dilate the wavelet is inversely
related to frequency w (o = 1 generates the mother
wavelet). More general types of wavelets are possible
than that in (12). Various authors [49]-[51] have applied
wavelets to the analysis, synthesis, and processing of mu-
sical sounds.

C. Generalized TF Distributions

The other fundamental line of research leading to TF
distributions for music is that represented by Wigner et al.
All of the TF distributions described above which adapt
time-independent transforms to time-varying signals by
using sliding windows assume that the signal is stationary
over the window length. The transforms determine the
spectral content within the window by decomposition into
infinite duration, time-invariant. sinusoids which do not
reflect the true nature of a time-varying signal. Gabor [7]
proposed a concept of instantaneous frequency, w'(t), and
time varying amplitude or envelope a(t) for a signal s(t)
where

s(t) = a(t) cos((t)) (13)

and
iy~ &
WH(t) = —4(1). (14)

Equation (13) reduces to the constant parameter case s(t) =
acos(wt) if a(t) = a and ¢(t) = wt, and thus is a
generalization of the infinite duration sinusoidal concept
of frequency and amplitude.

Gabor proposed using the Hilbert transform to resolve
the ambiguity of how to decompose an arbitrary s(t)
into functions a(¢) and cos(4(t)) to obtain instantaneous
frequency and amplitude as given in (13) and (14). The
Hilbert transform isolates the strictly positive frequencies

in the signal, creating the complex analytic signal as given
by

s™(t) = a(t) exp(¢(1)). (15)

Computing the instantaneous power |s*(¢)|? in this analytic
signal gives |a(t)|?, extracting the magnitude of the enve-
lope from (15). The phase ¢(t) is computed as arg(s4(t)),
and w;(t) is computed from the phase using (14). The
details of this are beyond the scope of this paper, but can
be found in Boashash [52] and Picinbono [53].

The WD has several attractive properties related to Ga-
bor’s concepts of the analytic signal [17]. Because the WD
satisfies its marginals, applying (6) to it expresses both
the instantaneous power and the squared modulus of the
complex envelope of the analytic signal. Furthermore, the
average frequency of the WD is equal to the instantaneous
frequency of the analytic signal [17]. These computations
derive the instantaneous frequency and amplitude or en-
velope for the signal as a whole, but can be extended to
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multiple individual components with reasonable restrictions
on the components of a musical signal model [54], [55].

While the WD has many desirable properties as described
above, it also presents difficulties to musical signal analysis.
In Cohen’s class the kernel that reproduces the WD from
(2) is an impulse function, which imposes no averaging
or smoothing at all, providing high resolution in time and
frequency, but with a penalty. The bilinear character of
the WD reflects the nonlinear nature of the computation
of energy for all members of Coben’s class. These com-
putations produce cross products between different signal
components which are typically smoothed over by time-
windowing kernels such as (10), but remain apparent in the
WD, often introducing negative values. These cross prod-
ucts are illustrated with our trumpet sample in Fig. 3(b),
where the pseudo-Wigner distribution (PWD) is shown, a
variation of the WD used with finite data sets. This covers
the same four harmonic frequency range as Figs. 1(b), 2(a),
2(b), and 3(a), but a time span of only 8 ms, because the
WD’s lack of smoothing requires a high display sampling
rate to avoid aliasing.’ Note the presence of cross products
more widely distributed in the spectrum than the 185 Hz
harmonic intervals seen in previous figures.

The flexibility of Cohen’s class allows the design of
a kernel for musical signals called the modal kemnel,
which can generate distributions between the STFT and
the Wigner cases, reducing the smoothing bias of the STFT
without incurring the cross products in the WD [54]-[57].
The design of the MD differs from that of many of the
new generalized TF distributions in Cohen’s class, such
as reduced interference distributions (RID) [58] and cone-
shaped kernel distributions [59]. The latter are optimized
for properties which are desirable in the general theory
of distributions, such as satisfaction of the marginals and
positivity. The MD, in contrast, focuses on the application
of estimating the instantaneous frequencies and amplitudes
of a multicomponent musical signal model with minimum
bias, where positivity is not important.

Key criteria for a musical signal distribution are wide
dynamic range, frequency estimation accuracy on the order
of cents,® averaging over time which is sufficiently mini-
mized to retain features on the order of tens of milliseconds
long, and low computational load. An important property
in the estimation of the multicomponent signals like our
trumpet example is limited superposition, which allows new
components to be added without affecting the estimation
of those already there if the new ones do not overlap the
others. Riley [60] describes this concept, which prohibits
cross terms between components, for speech processing
with Cohen’s class distributions.

The basis for the MD design is provided by the musical
signal model

5(t) =) _ Bi(t) exp(ju(t)) (16)
=1

STf a signal is sampled too sparsely relative to its rate of change, aliasing
distorts the result [14].
6One cent is a frequency ratio of 21/1200 = (one semitone)! /100
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where M positive frequency components are present, each
having time-varying amplitudes and phases (allowing time-
varying frequency). Each of the components must individ-
ually be an analytic signal, and components cannot overlap
in the TF plane. This is a much less restricted model
than extended FS methods allow. Considerable amplitude
and frequency modulation is permitted, as are inharmonic
components and multisource signals. The model in (16) is
the basis for additive music synthesis [61], and resynthesis
is directly facilitated by estimation of the model parameters.
The modal kernel is defined for Cohen’s class by

e (&) = hrp(7)Grp(§) amn

where hyp(7) and Grp(£) are low-pass filtering functions
whose cutoff frequencies are directly related to signal
properties such as the intercomponent frequency spacing.
The averaging of the WD obtained when (17) in in-
serted in (2) is independently determined for time and
frequency smoothing by the two factors in (17), which
makes this a separable kernel. These independent factors
allow smoothing with a time-bandwidth product less than
those imposed by methods related to STFI’s, including
extended FS and constant-@Q methods, while maintaining
enough smoothing to suppress cross products, minimizing '
the overall bias in the distribution. The separable kernel in
(17) also contributes to computational efficiency [55].

The modal kernel in (17) is related to the smoothed
PWD [62]. The two were developed independently, and
both are based on a simple time-smoothing of the PWD.
The smoothed PWD was presented as a spectral esti-
mator for a large class of random processes [63]. The
MD was developed for estimating the parameters of the
deterministic musical signal model in (16) [56]. To this
end, favorable lowpass filter characteristics for hzp(7)
and Grp(£) have been determined for the MD in that
application. These are related to the signal-to-noise ratio
(SNR) requirements for musical signal representation by the
MD, and to the accuracy of new instantaneous frequency
and power estimators developed specifically to operate on
the discrete MD to estimate the continuous parameters
in (16) [54], [55]. The lowpass filter cutoffs for hrp(7)
and Grp(€) have been determined for a wide variety of
signal types of specific interest in music. These cutoffs
are based on the intercomponent frequency spacing and
modulation of sinusoidally and exponentially amplitude
modulated components, as well as sinusoidally and linearly
frequency modulated components [55]. These cases cover
the most common examples of musical signal component
attack and decay characteristics, frequency and amplitude
vibrato, and glissandi.

The MD is illustrated in Fig. 4(a) for our trumpet sample,
which covers the same frequency range as Figs. 1(b),
2(a) and (b), and 3(a) and (b). The averaging over time
is comparable to the favorable time resolution of the
extended FS example in Fig. 2(a), but without the wide
bandwidth which causes intercomponent contamination, or
the problem of sampling at only harmonic frequencies of
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Fig. 4. MD’s of trumpet attack (same signal as previous figures),
combining the good time resolution of the extended FS analysis
in Fig: 2 with very good and excellent frequency resolution. (a)
16th—19th components for comparison to previous figures, exhibit-
ing half the time-bandwidth smoothing of extended FS or STFT
methods. (b) 18th component, displayed with a time-bandwidth
smoothing 23 times less than any extended FS or STFT method
can achieve, but with none of the cross terms of the Wigner or
PWD’s.

Fig. 2(b). The averaging in frequency is comparable to the
STFT in Fig. 3(a), where intercomponent contamination is
eliminated by narrow bandwidth, without the additional
time-averaging penalty in that figure. The reduced aver-
aging is achieved without the cross term interference of the
PWD in Fig. 3(b). Thus the MD captures the advantages of
all these methods, without the disadvantages.

A number of interesting features of the trumpet sample
are visible in Fig. 4(a). It is known [64] that the initial
frequency for a trumpet note is set by the player with little
help from the instrument, and that as the attack progresses,
the player adjusts the lip frequency based on feedback
from the instrument. These adjustments are multiplied
with each harmonic in proportion to harmonic number.
In the figure the 17th harmonic (second from the left)
moves from an initial value of 2864 Hz to 3125 Hz in
about 100 ms, which is a shift greater than a 185 Hz
harmonic multiple. The rapid shifting in frequency as well
as amplitude makes such an attack difficult to analyze
by time windowing methods, which assume that each
component remains relatively stationary. This component’s
representation in Fig. 4(a) as compared to Figs. 2(a) and
3(a) illustrates the distortions caused by window smoothing.
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Fig. 4(a) also suggests that the amplitude shifts of the
partials are highly coupled with the frequency shifts. In
general, amplitude increments are associated with a (possi-
bly short) period of frequency stability such that subsequent
shifts in frequency may cause a drop in amplitude. These
temporary peaks are the “blips” described earlier by various
sources [15], [16], [35] and are clearly seen in Fig. 4(a)
at the 19th (far right) component at about the 180 ms
point. However, the extended FS methods used by other
authors did not allow accurate tracking of amplitude versus
frequency, because of the wide bandwidth associated with
such windows. The extended FS plots in Figs. 2(a) and 2(b)
show an amplitude peak around 180 ms, but obscures the
associated frequency shifts.

While Fig. 4(a) represents a better than 2:1 reduction
below the minimum time-bandwidth averaging of any
window-based method, Fig. 4(b) shows the true power of
the MD. Displayed is the 18th harmonic component of our
trumpet sample [second from the right in Fig. 4(a)], with
the time-bandwidth product of the kernel 23 times less than
that achievable with any windowing method. Cross terms
are still suppressed, showing that time-bandwidth product
of the kernel can be reduced far below that required by
window-based kernels without a cross term penalty.

IV. EXTENSIONS OF MUSICAL TF ANALYSIS
TO PROBLEMS IN MUSIC PROCESSING

Music processing shares many.of the same applications
as speech processing, e.g., analysis, synthesis, compression,
and recognition. These are less developed, however, than
other areas of music research, perhaps primarily because
music processing has addressed historically the relatively
focused needs of composers. Indeed, recently published
edited volumes on music representation [65], [66] contain
relatively little on what we have presented as the core of
the signal representation problem, but investigate instead -
issues of representation at a “molar” level, such as one
might see in a theoretical linguist’s study of speech [67].
The following highlights several application areas and the
impact that TF theory has had on them.

A. Analysis and Resynthesis

The composer and researcher J.-C. Risset performed an
extensive analysis of trumpet tones [68]. He employed a
succession of FFT’s with a variable window length of 5-50
ms to capture the time-varying attributes of the timbre.
Risset’s research demonstrated that the spectrum of the
trumpet is nearly harmonic, the higher harmonics become
more prominent as the overall intensity increases, the
amplitude envelope of the higher harmonics have a slower
rise time and faster decay time than lower harmonics, the
attack portion of the sound is characterized by small, quasi-
random deviations in amplitude and frequency, and there .
is distinctive formant near 1500 Hz. Risset validated his
analysis through software-based synthesis. The process of
resynthesis not only confirmed the attributes discovered
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in his research, but also confirmed the notion that certain
characteristics of a time-varying spectrum play a key role
in the perception of timbre.

Risset’s work was extended by a series of historically
important analyses of traditional acoustic instruments as
codified in the Lexicon of Analyzed Tones [35]. Spectro-
graphic plots of violin, clarinet, oboe, and trumpet tones
depicted the changing amplitude of each partial over time.
These analyses are an important avenue of study for sound
synthesists interested in digitally recreating these particular
instruments or altering characteristics of the plot to explore
new timbres. Similarly, these analyses have been used
to explore theoretical synthesis methodologies such as
frequency modulation (FM) [69], waveshaping [70], [71],
and more recent efforts in additive synthesis [72], [73],
physical modeling [74], [75], and formant synthesis [76].

The advent of fast processors, and inexpensive storage
and memory have made the power of software-based syn-
thesis accessible to many musicians. For the first time in
history, composers have an infinite palette of timbre avail-
able to them through software-based synthesis. The sheer
magnitude of possible timbres and the myriad of parameters
used to define those timbres beckons for intelligent methods
to explore this expansive domain. Continued work in TF
distributions of traditional acoustic instruments as well as
synthetic sounds will assist composers in establishing an
aesthetic framework for timbre.

These developments within music signal processing par-
allel those within speech processing where such tools as
the spectrogram have played such an important role in
understanding the features of the speech waveform. They
differ, however, in the degree to which sophisticated. TF
techniques have been required, primarily because of the dif-
ference in focus on the signal. On the one hand, parametric
modeling of the speech signal has sufficed in characterizing
the gross features of the acoustic signal responsible for the
basic phonetic component of speech communication. On
the other hand, the high-fidelity requirements of the music
signal have called for ever increasing refinements of the
TF representation to reveal the signal dynamics that are
responsible for our perception of the attack, decay, sustain,
and release phases of something as simple as a musical note.

B. Transcription

Like its counterpart in speech processing, automatic
music transcription presents a challenge that has required
considerable research effort to obtain even the relatively
few and meager successes of the past decade. Music
transcription is complicated by the fact that, unlike the
current demands of speech processing, the nuance of the
performance (or utterance) is as much of interest as the mu-
sical score (or sequence of words) that is being performed.
Complicating this fact is that most musical performances
demand conditions that are known to compromise the best
of speech recognition algorithms: the signal is made up of
many voices or timbres, rather than just one, and recordings
are often made under conditions of considerable multipath
distortion (e.g., reverberation).
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A base-level automated music transcription system takes
a musical signal as input and from that signal, determines
the fundamental pitch. The duration of the fundamental
is placed within the context of time which renders this
essential information as traditional music notation. Several
approaches to this problem have led to successful single-
timbre transcription systems including those by Piszczalski
[77] and Moorer [33]. Within Moorer’s approach, two
voices of similar timbre and limited time variation have
been transcribed under certain limiting conditions, but it
appears that all approaches taken thus far are very sensitive
to the presence of more than one particular timbre.

A variant on the transcription of pitch is the transcription
of tempo or rhythm. Schloss’ work [78] pertains to the
transcription of percussive instruments where pitch is a
more difficult attribute to define. This is related in scope
to research on real-time automatic accompaniment systems
[78] in which the computer accompanist must determine
the tempo and microvariations of the soloist.

A more complete transcription system would not only
determine the musical score performed by multitimbre
sources, such as a symphonic orchestra, Gamelan ensemble,
or jazz quartet, but would be able to transcribe the subtle
(and not so subtle) expressiveness of the musicians in their
performance. Such variations underly what is commonly
assumed to distinguish a great from an average performance
and would involve the transcription of microvariations in
such gross features as tempo, intensity, and pitch, as well
as the finer variations in timbre that reflect the different
ways in which the performer generates the sound through
their musical instrument. As Brown [47] has argued, these
aspects of performance and its transcription cannot be easily
documented with standard Fourier techniques and require a
more powerful suite of TF tools.

C. Visualization

An emerging application which is relatively unique to
the field of music processing is what we call visualization,
although in a basic sense this problem is common to the
discipline of signal representation, in general, and shares
features with visual training devices in speech communica-
tions, in particular. By visualization we mean the mapping
of an acoustic signal into visual form in order to better
highlight desired features of the signal over others. Since
antiquity, musicians master the subtle nuances of musical
interpretation and expression through an auditory mentoring
relationship with a teacher. A volley of teacher performs,
student listens and subsequently performs, characterizes the
apprenticeship. Extending feedback mechanisms to include
visual as well as auditory perception may radically alter
the pedagogy of musical performance, lead to better rates
of learning, improved efficiency in practice, and greater
accuracy in the control of music production process.

Visualization is the youngest and least developed of the
applications areas discussed, but it is by far the most
demanding of the technology. The tools of visualization
must build from those TF distributions and algorithms that
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are found to be most useful in analysis and transcription.
To provide the flexibility in pedagogy, these algorithms
must be implemented in real-time: in today’s terms, our
own internal fast-algorithm implementation of the modal
kernel achieves a ratio of 100:1 in processing-to-real-time
on a 90-MHz Pentium architecture for signals sampled at
44.1 kHz [80]. Finally, the exact form of the mapping
must be considered carefully. What the eye sees in a visual
representation of a TF surface is not always directly related
to what the ear hears [81], [82]. Research on auditory
front ends has much to offer designers of visual trainers
for the recoding of the TF surface into more meaningful
psychological units, such as pitch and timbre [83], [84].

V. SUMMARY -

We have traced the major time and frequency analysis
methods that have been applied to music processing, and
described application areas for these methods, with the
contributions of key researchers highlighted in the review.
Analyses spanning FS and FT’s, several extended FS meth-
ods, variations on the STFT and constant-@Q transform,
the WD, and the MD were all covered. Techniques were
compared by placing them in the context of Cohen’s class of
generalized TF distributions, which computes signal energy
as a TF function. This facilitated comparison of existing
methods, insight into the nature of the problem, and the
design of new approaches. The limitations of windowing
methods and their reliance upon steady-state assumptions
and infinite duration sinusoids to define frequency and
amplitude was demonstrated. The analytic signal as a
basis for defining instantaneous frequency and power was
shown to surpass these limitations, and led to the WD’s
and MD’s, with the latter optimized for estimating these
parameters in a musical signal model. The tenor of these
techniques was further illuminated by their application to
a trumpet sample chosen for its TF content. The strengths
and limitations of each approach in revealing perceptual
attributes of ‘music, especially pitch and timbre, were de-
scribed. -

Music signal processing begins with a primitive sig-
nal representation, such as the TF representations which
were the focus of much of this paper, and from these,

develops more extensive representations. Applications to

analysis and resynthesis, transcription, and visualization
were described. Analysis and resynthesis were compared
to the speech processing case, where the music signal’s
nature demands greater representation fidelity than speech
often does. Music transcription was similarly compared to
speech transcription, where the complications of multiple
sources and reverberation are the norm, in contrast to
speech where they can usually be avoided. Visualization
was described as an emerging application, with the potential
to radically alter the pedagogy of musical performance
and practice. This application asks the most of all of
TF methodology by combining the demands of real-time
analysis and transcription with the need to portray the
results in meaningful sensory displays.
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