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ABSTRACT Instead bothx andy = P (C| x) must be modelled as random

We address the theoretical and practical issuadvied in ASR variables, with pdfs rather tha.wa;:t wlues. -

when some of the obseion data for the tget signal is masd Wwe assume that SOME prior process has partm(_)ned each data
by other signals. &chniques discussed range from simple missing VECtorX into present andmissing (or certain anduncertain) parts,

data imputation to Bayesian optimal classificatione Wave (X Xp) . The missing part is modelled as a randaaniable,
developed the Bayesian approach because thisvllprior whose obseed \alues, if aailable at all, are uncertain and
knowledge to be incorporated naturally into the recognition denotedX,. Let k denote all knaledge abouk, including x,,
process, thereby permitting us to gyded the simple “intgrate X,» and ay other @ailable information, such as a noise model.

over missing data” or “mainals” approach reported elgleere, - :
which we shw to be inadequate for dealing with realistic patterns 2.1 Missing Data Imputation

of missing data. After dering general techniques for recognition The simplest approach to recognition with missing data is to
with missing data, these techniques are formulated in thextonte estimatex,, from its posterior pdf (X k) , where the prior pdf for

of an HMM based CSR system. This schemeviduated under x is estimated from the training seteWan then proceed as with
both random and more realistic patterns of missing data, withcomplete data, i.e. takhe class decision:

speech from the BRPA RM corpus and noise from NOISEX.eN d(x) = argmaxP(C| Xp Kim) (1

find that a ky problem in real wrld recognition with missing data

is that eficient ASR requires dataeetor components to be
independent, and incomplete data cannot be orthogonalised in th
usual vay by projection. W shaov that use of spectral peaks only ) 2
can proide an eflective solution to this problem. E[x k] = argmingE[ (x-6)? k] 2

1 INTRODUCTION 2.2 Class Probability Imputation

We can also try to estimate alwe for the random ariable
y = P(C|x) directly While the pdf fory will in general be
impractical to obtain, itsxpected alue can be obtained in closed

We can obtain arious estimates fox from f (x| K) , such as its
mean, median or mode. Of these the mean is the most accurate in
fhat it has the minimunxeected quadratic error:

Our motiation for studying the “missing data” (MD) problem
derives from ongoing studies at Sfield and elsehere on source
separation by computational auditory scene analysis (CASA). - . ;
CASA based separation prior to recognition is an atuacti fo[rjnf] W'thoﬁt r.eference to its pdf because yn‘ny(y) and
paradigm for robst ASR because it me& no assumptions about x Oy (x) . then:
source type (as does parallel model combination) or number (as Ely] = J’yfy(y)dy = J’yfx(x)dx 3)
does blind separation). Mever, the potential for MD techniques y X
in ASR does not stand calf with CASA based separation. In the  This gives us class probability conditional meafue imputation:
case of unstructured and near stationary noise there are alernati d(x, k) = argmax.E [P(C] X, K)| K] )
means for local snr estimation [10], while in some applications, ' ¢ ’
such as band limited or multi-stream ASR [4], the deletion pattern
is imposed a priori. In each case this approach requires a solution ~ E[P(C| x,K)| K] = J’P(C\ X, K)f(x| K)dx (5)
to the MD problem. This paper is a summary of gdaiTR [9]. X
A number of recent studies\aexamined the MD problem ~ 2.2.1  Certain-Uncertain Factorisation

[1,7,8,11,13]. A method is presented in [1] for MD with stationary Factorising f (x| C) = f(xp, Xm\ C) = f(xp‘ C)f (Xm\ Xor C)
noise, and a general maximuméikhood framevork for both f(xm\ X K, 0)

7 - K} (6)

training and recognition with MD is presented in [7].wéger, E[P(C| x, K)| K] = P(C| x,, K)E

these methods are not Bayesian, and do not address practical P f(X| X K)

implementation issues. In the case when the classifier yioes models f(x|C) for each
class, ankk = x, only (x, is not used), the denominator in Eq.6

2. CLASSIFICATION WITH MISSING DATA cancels and the’pdf ingestes to 1, ging-

In recognition with missing data we are confronted with the E[P(C| x, Xp)\ x.] = P(C| Xp) 7
problem that whereas with complete data the optimal class P
decisiond (x) given data ector x ist C° = argmax:P (C| x)

(see desiation of Eq.14 in section 3), with MIP (C| x) cannot

be directly galuated because does not hee an eact \alue. 1. P(x) is “probability of x” & f(x) is the “probability density at x".

where

This is the widely reported “mginal” technique [1,7,8,11,13].




2.2.2 Adapting a Classifier to Opate with Missing Data mixture (GM) pdf (Egs.27,28) and transition probabilities,

For ary classifier whose outputs approximate a posteriori class P(Sj\ §) , between each of these states. Speech units may be

robabilities, y(x) = P(G|x), the ne output which is required to  Werds or subwrd units such as monophones, diphones, or
gperate with I\)/(ID)K‘ un(gc“lr)constraims Lf g triphones. It does not concern usnahthe parameters for these

models are estimated, becawse interest here is in recognition
yi'0) =E[P(C| x)| K] = J’yi(x)f(xm‘ K)dx,, (8) with MD by systems trained on complete data only.
X ) In recognition we must select the optimal state sequence
When f(x,|K) and the abee integgral can be waluated in closed C=(s ) given data matrixM = (X, X X7)
f s . . pr . 1;521---51'_9__ . 17 _2: AT
orm it is straightforvard to adapt the classifier to operate with (jnder the “usual simplifying assumptions of data independence

missing and uncertain data. As well as the HMM system describedyetween frames and Markian dependence between states, for
in section 4.1, this is also true of the RBF ratndescribed in [1]. complete data the sequence probability vegiby: '

3. BAYESIAN OPTIMAL CLASSIFICATION P(CIM) = nf(xi‘ s) P(Si\ Si_1) (18)
The Bayesian approach [3] to deéng an optimum class '
decisiorC for given data(x, K) is to first specify &oss function,
L(C,d(x,K)), for every true clas<C and decided clasg (x) , E[P(CIM, k) [k] = E[P(CIM)|K] (19)
and then minimise theverall epected loss or Bayes risk, and the same independence assumptiomstge latter as:
r (d(x, k)), with respect to this loss function and the posterior f(x ‘ X, S) (20)
pdf, P(C|x). In simple all or nothing classification, correct Hf(xpi‘ s)P(s|s-)E MR ] = |_|Qij
classification is usually assigned loss 0 and incorrect classification i f (Xmi\ Xpi) i

loss 1 (knan as "zero-one loss”). The "Bayes risk” is the Therefore, during theitérbi recognition procedure with MD, for

expected losswer all C and all x: data framex; we must ealuate for each (ack) states;:
r(d(x, K)) = E[L(C, d(x, K))| K] :

In the case of the kidedgek which concerns us here (Eq.23),

— f(Xmi‘ Xpi’sj)
= 3 JL(C. d(x K)F (C, X K) dx (10 Qij = TOpi )P(§[S-) Bl = =K (1)
X ’ f (Xmi‘ Xpi)
where:
= [Z L(C, d(x, K))P(C| X, K)] f(x| K)dx (11) (el X9 | X 9)
X E K| = J’ fif(xm‘ K)dx, (22)
Whend (x, k) selects correct clags®, then with zero-one loss: fX| Xp) %, x| %)
ZL(C, d(x, K))P(C| x, K) = Zc P(C| x, K) (12) Besides the present data, whiclkegi us certainalues, further
cFtee contrikutions to our knavledge (k) of x include the follaving:
= (1-P(C° x,K)) (13) + the additvity of enegy from different sound sources tells us
This shevs that with complete data the Bayes risk is simply the that the uncertain data pides upper bounds for each of the
probability of misclassification, and this is minimised by the missing components
commonly used rule of maximising® (C| x) , i.e.:  our preprocessing procedure ensures that missihgy are
d(x) = argmax.P(C| X) (14) . bgunded belw by zero.
whereas with missing data the Bayes risk vegiby: Thisgivesusk = (Xp’ Xm0 10.%,]), s0 (23)
X,
r(d(x, K) = [(1=P(C°| x K)) f(x| K)dx 15 X
[ | (15) ] K) = 0] X/ [T )i (24)
which is minimised by the Bayes decision: and 0
d(x, k) = argmax. J' P(Cl x, K)f(x| K)dx,, (16) X X (25)
X Q, i = P (sj‘ S _1) f(xp‘ ) I f(xm‘ X gdx,/ J’ f(xm‘ xp)dxm
= argmax-E [P(C| x, k)| K] a7 0 0
This shavs us that the class probability meaalue imputation If MD bounds are not used, o, is zero, the ingrals in EQ.25

technique, pnédously derved in section 2.2 (Eq.4) by another cancel out. Otherwise the denominator \@baan be ignored
amgument, is in dct Bayesian optimal (with respect to zero-one because it is independent of choice of state, so that:

loss).We now have a theoretical basis for optimal recognition with X
missing and uncertain data.

u

Q; 0 P(s]‘ S _1) f(xp‘ s)J’f(xm‘ Xy S dx, (26)
4. HMM BASED CSR WITH MISSING DATA 0

- o 4.2 Implementation Issues
4.1 Derivation of MD Adapted Recognition Formulae

i . 4.2.1 Properties of the Gaussian MixeiPDF
CSR is presently dominated by HMM based systems and vee ha P ) ) i .
therefore focused on MD techniques as required within this Each HMM state is modelled as a Gaussian mixture pdf:
framevork. The continuous density HMM system [14,15] consists f(x sj) = z a; N(X, Hijo Cij) @7

J

of an HMM model for each of a\gin set of speech units, with  Thjs pdf is senfiparametric (it can fityapdf when gien enough

optional ~simple grammar model ¢rd-word transition  yixtyre components) and self coniug (its posterior pdf is of the
probabilities). The HMM model consists of adk number of  same amily). Each mix component:

hidden emitting states, each of which is modelled as a Gaussian



Citeliy_ . —05 i i
NG, 1, C) = [ (2m " Cle™ wct(x o 28) 51 Clean Speech Wlth.Random Delet|on.
) N ) ) ) Our initial tests used uniform random deletiongrofrequeng
is specified by its meareetorp and coariance matrixC. Let the and time, and data without noise. Models used at this stage were
present and missing componentspfand C corresponding to 1-mix monophones with full cariance. The data pdf as
(Xp Xy) be separated as: c estimated as GaussiaNx, |, C) . Figure 1 shas performanck
m= (1, 1) C = | Pp 7pm (29 agpinst proportion of data deleted, for MD imputation techniques
pom Cpm Cim ‘ using increasing amounts of prior information (Egs.1,2):
. I . 1. X = E[X noinformation] (zero imputation)
then the meglnal pdf of a GM is gien by: 2. % = E[x ] (mean imputation)
f0e] ) = zaiN(Xp' Wip Cipp) (30) 3. X = E[X W C] (conditional mean imputation)
and the conditional pdf by: and for class probability imputation, with = X, (maginals):
A p = aiN(xp, Hip Cipp)/f(xp‘ S) (31) 4. IP(C| x) O= E[P(C| X, xp)‘ xp] (Eqgs.4,7,30)
m = p+ ct C—l(x 1) (32) The characteristics shwm in Fig.1 agree with those reported in
m p m p”t‘ pp_l P p ’ [1,7,8,11], where the mginals technigue holds out well with up
Crip = Crm ™ ComCppCom (33) to 60% random deletion.
fx %, 9 = Y a, Nxu G 34
m %o Z mi P mf ptim P (34) DT A = zero imputation
The product of GMs is GM. The quotient of a GM with a Gaussian @ = mean imputation

is GM. The product of the mginal with the intgral of the
conditional (Eq.26) nw takes ona simple form:

Qij O ZaiN(xp, Hip o pp)J’N(xm, Himy pr Cim‘ p)dxrn (35)
! 0

<> = cond. mean imput.
E = marginals

% word accuracy
k2

4.2.2 Evaluation of the Multivariate Gaussian Integral

Evaluation of the multiariate Gaussian irgeal in Eq.35 in closed Q 4

form requires a change ofmable which results in a diagonal Q ot ok o o® N

covariance matrix. This can be aclhée either: deletion probability
1. exactly, by projectingx onto C’s principal components -
2. approximatelyusing a fied discrete cosine transform Figure 1: ASR performance on clean data with random
3. crudely by simply treating all dfdiagonal alues as zero deletions over frequency and time, for three data imputation

Option 3 gves unacceptably Yo performance. Options 1 or 2 can methods and for marginals Bayesian estimation.

be applied using the folling result[ 12]: . . .
5.2 S/N Mixturewith Local SNR Based Deletion
xON(x, 1, ©) Oy = A ON(y, A', A'CA) (36) o o
This still | idal f intati hich b As spectro-temporally neigbouring data is highly correlated, the
Is still lewes a trapezoidal area of igtation which must be a5 -mation werlap in a data sample is less the more uniformly
a_pprom_mated by a bou_ndlng reCt?‘”Q'e- Most of th_e area ofa h'ghthis data is distribted. At a gien deletion rate random deletion
dlmensflor!al rectanghlcer:.s close to |t5mc?]s [s.]’so this still lees will therefore presewrr considerably more information than the
SI;:OpI\‘;Dor |naé:_c_urg{cl td]:s_weEre ggtfsot ehig CofSt mbdu?‘tlgg clustered time-frequegaeletions which are more &ky to occur
the conditional paf in Eq. orvery state for each data reality. For this reason we lra also tested MD techniques using
frame could be eliminated entirelyy forcing all \alues to hee local snr based deletion, wherebglues in a s/n mixture are
non zero uncertainty . deleted when the a priori local snr is bela given threshold.
Univariate standard Gaussian pdf and aities ((x) and Under these conditions the 61% accyréar maginals at 40%
I(D (x) ;eSpewﬁM aée (W;Olcas”y T‘»O s(rg;':l(ll ;f;at we n’kl)us:bn}éw_lth g random deletion in Fig.lafls to 32% for the same deletion rate.
ogarithms. ‘Whenabs(x) <5, log (®(x)) can be obtaine In Fig.2 we are wrking with a s/n mixture at 18 dB global
using the C-standard erf() and log() functions. Otherwis®(®l g,/ Here 1-mix maginals accuragfalls to 28%. In the final stage
must be calculated directlgpproximating® (x) by -@(x) /x of the RM Recipe (which reaches 95% absolutedaaccurag
for x<-5 and1-¢(x)/x for x>5 [6]. when trained from a flat start) state models use 5-mix GMs,
speech units are (state clustered) triphones, and eetiars hae
5. EXPERIMENTATION WITH RM AND NOISEX first and second d#rence components appended. Computational
Our speech data is from theARPA RM 1000 vord spea&r cost completely precludes the use of fulagance at this stage.
independent CSR corpus [15]. All 2880 sentences inthe trn109 set  wjth complete data this problem isveycome by
are used for training; recognition tests usesyel in 5 sentences  approximately orthogonalising the datector using the DCT (or
from the 500 sentence feb89 test set. HMM configuration andpCA). This has the fct that gery data ceariance matrix
training follov the “RM Recipe” in [15]. This is a multi-stage  pecomes approximately diagonal, thereby reducing the storage
procedure which starts with 1-mix monophone models and required for each s@riance matrix from fito n, and floating
progresses through to 5-mix state-clustered triphones. point operations Wolved in coariance matrix arithmetic from
For Fig.1 and resultsiv in Fig.2 speech data is parametrised O (n?) ton, or, in the case of matrix wersion, fromn® to n.
as a 16 channel mel scaled FFT filterbank (fbank16).

1. The “%word accuracy” usually quoted is 100.(H-1)/(H+S+D). Here we
have used 100.H/(H+S+D+l), because this is a true percentage [9].



As combining a knen with an unknwn value results in an in high resolution representations can lead tlarf performance
unknaowvn value, neither of the linear preprocessing operations of when this redundagds not eploited.
data orthogonalisation or time féifencing, frequently carried out
during cowentional ASR, are possible with MD. Resiiit in
Fig.2 shavs that the disacntage of going from full to diagonal

6. DISCUSSION

covariance without orthogonalisation is more thafsetf by the
adwantage of using triphones andfditnce coditients.

% for orthogonal

% for non orthogonal
representation of clean signal

representation of clean signal

WU T
P+ _ - Vil
) i v v
g .
3 O+ 1l v
©
B ol .
g BT % for orthogonal
° representation of s/n mix
S 0+ /
Qo t t t t t t i
experiment number
n params | model method marg bounds
i fbank16 | 1-mix marginas | snr not snr
ii fbank16 | 1-mix | marg+b snr not snr
iii fbank16 | 5-mix marg+b snr not snr
iv fbank16 | 5-mix marg+b pk & snr | not snr
\Y rate64 5-mix marg+b snr not snr
vi rate64 5-mix marg+b pk & snr | not snr
vii | ratebd 5-mix marg+b pk & snr | pk & not snr

Figure 2: shows performance of various atgies for the
recgnition of RM data mixed with helicopter noiseonfr
NOISEX, at 18 dB global snfhe table specifies the details
eadr experiment: paameterisation, model typemissing date
method, and rules for inclusion of éaealue into the mainals
or bounds fact® (Egs.6,26,35). Abbriations: “1-mix” =
“1-mix monophones, with full eariance”, “5-mix” = “5-mix

state-clustezd triphones, with digonal cwariance anc
appended 1st and 2nd fdifence codicients”, “b” = “bounds”,

“snr” = “local snr > 18 dB”, “pk” = “is spectr al peak”.

5.3 Peaks Selection for Data Orthogonalisation

The only vay a filterbank gctor can be rendered orthogonal
without projection is to select a subsample of points none of which

We hae developed a Bayesian framverk for classification with
missing data.W hare demonstrated that this can be applied to
HMM based ASR with spectral data in which noise corrupted
values hge been tagged. In so doing isvnoted that normal
orthogonalisation techniques are not applicable with missing data
and this problem was partly @ercome using a high resolution
spectral data representation from which only peaks were retained.
Performance could possibly be impedl by &panding the data
vector to span a number of time frames, therekploéting
temporal data correlation.
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