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Abstract

Over the last years significant efforts have been made to develop kernels
that can be applied to sequence data such as DNA, text, speech, video
and images. The Fisher Kernel and similar variants have been suggested
as good ways to combine an underlying generative model in the feature
space and discriminant classifiers such as SVM’s. In this paper we sug-
gest an alternative procedure to the Fisher kernel for systematically find-
ing kernel functions that naturally handle variable length sequence data
in multimedia domains. In particular for domains such as speech and
images we explore the use of kernel functions that take full advantage
of well known probabilistic models such as Gaussian Mixtures and sin-
gle full covariance Gaussian models. We derive a kernel distance based
on the Kullback-Leibler (KL) divergence between generative models. In
effect our approach combines the best of both generative and discrim-
inative methods and replaces the standard SVM kernels. We perform
experiments on speaker identification/verification and image classifica-
tion tasks and show that these new kernels have the best performance
in speaker verification and mostly outperform the Fisher kernel based
SVM’s and the generative classifiers in speaker identification and image
classification.

1 Introduction

During the last years Support Vector Machines (SVM’s) [1] have become extremely suc-
cessful discriminative approaches to pattern classification and regression problems. Ex-
cellent results have been reported in applying SVM’s in multiple domains. However, the
application of SVM’s to data sets where each element has variable length remains problem-
atic. Furthermore, for those data sets where the elements are represented by large sequences
of vectors, such as speech, video or image recordings, the direct application of SVM’s to
the original vector space is typically unsuccessful.

While most research in the SVM community has focused on the underlying learning al-
gorithms the study of kernels has also gained importance recently. Standard kernels such
as linear, Gaussian, or polynomial do not take full advantage of the nuances of specific
data sets. This has motivated plenty of research into the use of alternative kernels in the



areas of multimedia. For example, [2] applies normalization factors to polynomial kernels
for speaker identification tasks. Similarly, [3] explores the use of heavy tailed Gaussian
kernels in image classification tasks. These approaches in general only try to tune standard
kernels (linear, polynomial, Gaussian) to the nuances of multimedia data sets.

On the other hand statistical models such as Gaussian Mixture Models (GMM) or Hidden
Markov Models make strong assumptions about the data. They are simple to learn and
estimate, and are well understood by the multimedia community. It is therefore attractive
to explore methods that combine these models and discriminative classifiers. The Fisher
kernel proposed by Jaakkola [4] effectively combines both generative and discriminative
classifiers for variable length sequences. Besides its original application in genomic prob-
lems it has also been applied to multimedia domains, among others [5] applies it to audio
classification with good results; [6] also tries a variation on the Fisher kernel on phonetic
classification tasks.

We propose a different approach to combine both discriminative and generative methods to
classification. Instead of using these standard kernels, we leverage on successful generative
models used in the multimedia field. We use diagonal covariance GMM’s and full covari-
ance Gaussian models to better represent each individual audio and image object. We then
use a metric derived from the symmetric Kullback-Leibler (KL) divergence to effectively
compute inner products between multimedia objects.

2 Kernels for SVM’s

Much of the flexibility and classification power of SVM’s resides in the choice of kernel.
Some examples are linear, polynomial degreep, and Gaussian. These kernel functions
have two main disadvantages for multimedia signals. First they only model inner products
between individual feature vectors as opposed to an ensemble of vectors which is the typical
case for multimedia signals. Secondly these kernels are quite generic and do not take
advantage of the statistics of the individual signals we are targeting.

The Fisher kernel approach [4] is a first attempt at solving these two issues. It assumes the
existence of a generative model that explains well all possible data. For example, in the
case of speech signals the generative modelp(x|θ) is often a Gaussian mixture. Where the
θ model parameters are priors, means, and diagonal covariance matrices. GMM’s are also
quite popular in the image classification and retrieval domains; [7] shows good results on
image classification and retrieval using Gaussian mixtures.

For any given sequence of vectors defining a multimedia objectX = {x1,x2, . . . ,xm} and
assuming that each vector in the sequence is independent and identically distributed, we
can easily define the likelihood of the ensemble being generated byp(x|θ) asP (X|θ) =∏m

i=1 p(xi|θ). The Fisher score maps each individual sequence{X1, . . . , Xn}, composed
of a different number of feature vectors, into a single vector in the gradient log-likelihood
space.

This new feature vector, the Fisher score, is defined as

UX = ∇θlog(P (X|θ)) (1)

Each component ofUX is a derivative of the log-likelihood of the vector sequenceX
with respect to a particular parameter of the generative model. In our case the parameters
θ of the generative model are chosen from either the prior probabilities, the mean vector
or the diagonal covariance matrix of each individual Gaussian in the mixture model. For
example, if we use the mean vectors as our model parametersθ, i.e., for θ = µk out ofK
possible mixtures, then the Fisher score is



∇µk
log(P (X|µk)) =

m∑
i=1

P (k|xi)Σ−1
k (xi − µk) (2)

whereP (k|xi) represents thea posteriori probability of mixturek given the observed
feature vectorxi. Effectively we transform each multimedia object (audio or image)X of
variable length into a single vectorUX of fixed dimension.

3 Kullback-Leibler Divergence Based Kernels

We start with a statistical modelp(x|θi) of the data,i.e., we estimate the parametersθi

of a generic probability density function (PDF) for each multimedia object (utterance or
image)Xi = {x1,x2, . . . ,xm}. We pick PDF’s that have been shown over the years to
be quite effective at modeling multimedia patterns. In particular we use diagonal Gaussian
mixture models and single full covariance Gaussian models. In the first case the parameters
θi are priors, mean vectors, and diagonal covariance matrices while in the second case the
parametersθi are the mean vector and full covariance matrix.

Once the PDFp(x|θi) has been estimated for each training and testing multimedia object
we replace the kernel computation in the original sequence space by a kernel computation
in the PDF space:

K(Xi, Xj) =⇒ K(p(x|θi), p(x|θj)) (3)

To compute the PDF parametersθi for a given objectXi we use a maximum likelihood
approach. In the case of diagonal mixture models there is no analytical solution forθi

and we use the Expectation Maximization algorithm. In the case of single full covariance
Gaussian model there is a simple analytical solution for the mean vector and covariance
matrix. Effectively we are proposing to map the input spaceXi to a new feature spaceθi.

Notice that if the number of vector in theXi multimedia sequence is small and there is not
enough data to accurately estimateθi we can use regularization methods, or even replace
the maximum likelihood solution forθi by amaximum a posteriorisolution. Other solu-
tions like starting from a generic PDF and adapting its parametersθi to the current object
are also possible.

The next step is to define the kernel distance in this new feature space. Because of the statis-
tical nature of the feature space a natural choice for a distance metric is one that compares
PDF’s. From the standard statistical literature there are several possible choices, however,
in this paper we only report our results on the symmetric Kullback-Leibler (KL) divergence

D(p(x|θi), p(x|θj)) =

∞∫
−∞

p(x|θi) log(
p(x|θi)
p(x|θj)

) dx +

∞∫
−∞

p(x|θj) log(
p(x|θj)
p(x|θi)

) dx

(4)

Because a matrix of kernel distances directly based on symmetric KL divergence does not
satisfy the Mercer conditions,i.e., it is not a positive definite matrix, we need a further step
to generate a valid kernel. Among many posibilities we simply exponentiate the symmet-
ric KL divergence, scale, and shift (A andB factors below) it for numerical stability reasons

K(Xi, Xj) =⇒ K(p(x|θi), p(x|θj))

=⇒ e−A D(p(x|θi),p(x|θj))+B
(5)



In the case of Gaussian mixture models the computation of the KL divergence is not direct.
In fact there is no analytical solution to Eq. (4) and we have to resort to Monte Carlo
methods or numerical approximations. In the case of single full covariance models the KL
divergence has an analytical solution

D(p(x|θi), p(x|θj)) = tr(Σi Σ−1
j ) + tr(Σj Σ−1

i )−
2 S + tr((Σ−1

i + Σ−1
j ) (µi − µj)(µi − µj)

T )
(6)

whereS is the dimensionality of the original feature datax. This distance is similar to the
Arithmetic harmonic sphericity (AHS) distance quite popular in the speaker identification
and verification research community [8].

Notice that there are significant differences between our KL divergence based kernel and
the Fisher kernel method. In our approach there is no underlying generative model to repre-
sent all the data. We do not use a single PDF (even if it encodes a latent variable indicative
of class membership) as a way to map the multimedia object from the original feature vector
space to a gradient log-likelihood vector space. Instead each individual object (consisting
of a sequence of feature vectors) is modeled by its unique PDF. This represents a more lo-
calized version of the Fisher kernel underlying generative model. Effectively the modeling
power is spent where it matters most, on each of the individual objects in the training and
testing sets. Interestingly, the object PDF does not have to be extremely complex. As we
will show in our experimental section a single full covariance Gaussian model produces
extremely good results. Also, in our approach there is not a true intermediate space unlike
the gradient log-likelihood space used in the Fisher kernel. Our multimedia objects are
transformed directly into PDF’s.

4 Audio and Image Databases

We chose the 50 most frequent speakers from the HUB4-96 [9] News Broadcasting corpus
and 50 speakers from the Narrowband version of the KING corpus [10] to train and test
our new kernels on speaker identification and verification tasks. The HUB training set
contains about 25 utterances (each 3-7 seconds long) from each speaker, resulting in 1198
utterances (or about 2 hours of speech). The HUB test set contains the rest of the utterances
from these 50 speakers resulting in 15325 utterances (or about 21 hours of speech). The
KING corpus is commonly used for speaker identification and verification in the speech
community [11]. Its training set contains 4 utterances (each about 30 seconds long) from
each speaker and the test set contains the remaining 6 from these 50 speakers. A total of 200
training utterances (about 1.67 hours of speech) and 300 test utterances (about 2.5 hours
of speech) were used. Following standard practice in speech processing each utterance
was transformed into a sequence of 13 dimensional Mel-Frequency Cepstral vectors. The
vectors were augmented with their first and second order time derivatives resulting in a
39 dimensional feature vector. We also mean-normalized the KING utterances in order to
compensate for the distortion introduced by different telephone channels. We did not do
so for the HUB experiments since mean normalizing the audio would remove important
speaker characteristics.

We chose the Corel database [12] to train and test all algorithms on image classification.
COREL contains a variety of objects, such as landscape, vehicles, plants, and animals. To
make the task more challenging we picked 8 classes of highly confusable objects: Apes,
ArabianHorses, Butterflies, Dogs, Owls, PolarBears, Reptiles, and RhinosHippos. There
were 100 images per class – 66 for training and 34 for testing; thus, a total of 528 training
images and 272 testing images were used. All images are 353x225 pixel 24-bit RGB-color
JPEGs. To extract feature vectors we followed standard practice in image processing. For



each of the 3 color channels the image was scanned by an 8x8 window shifted every 4
pixels. The 192 pixels under each window were converted into a 192-dimensional Discrete
Cosine Transform (DCT) feature vector. After this only the 64 low frequency elements
were used since they captured most of the image characteristics.

5 Experiments and Results

Our experiments trained and tested five different types of classifiers: Baseline GMM, Base-
line AHS1, SVM using Fisher kernel, and SVM using our new KL divergence based ker-
nels.

When training and testing our new GMM/KL Divergence based kernels, a sequence of
feature vectors,{x1,x2, . . . ,xm} from each utterance or imageX was modeled by a single
GMM of diagonal covariances. Then the KL divergences between each of these GMM’s
were computed according to Eq. (4) and transformed according to Eq. (5). This resulted
in kernel matrices for training and testing that could be feed directly into a SVM classifier.
Since all our SVM experiments are multiclass experiments we used the 1-vs-all training
approach. The class with the largest positive score was designated as the winner class. For
the experiments in which the object PDF was a single full covariance Gaussian we followed
a similar procedure. The KL divergences between each pair of PDF’s were computed
according to Eq. (6) and transformed according Eq. (5). The dimensions of the resulting
training and testing kernel matrices are shown in Table 1.

Table 1:Dimensions of the training and testing kernel matrices of both new probablisitic
kernels on HUB, KING, and COREL databases.

HUB HUB KING KING COREL COREL
Training Testing Training Testing Training Testing

1198x1198 15325x1198 200x200 300x200 528x528 272x528

In the Fisher kernel experiments we computed the Fisher score vectorUX for each training
and testing utterance and image withθ parameter based on the prior probabilities of each
mixture Gaussian. The underlying generative model was the same one used for the GMM
classification experiments.

The task of speaker verification is different from speaker identification. We make a binary
decision of whether or not an unknown utterance is spoken by the person of the claimed
identity. Because we have trained SVM’s using the one-vs-all approach their output can
be directly used in speaker verification. To verify whether the utterance belongs to class
A we just use the A-vs-all SVM output. On the other hand, the scores of the GMM and
AHS classifiers cannot be used directly for verification experiments. We need to somehow
combine the scores from the non claimed identities,i.e., if we want to verify whether an
utterance belongs to speaker A we need to compute a model for non-A speakers. This non-
class model can be computed by first pooling the 49 non-class GMM’s together to form a
super GMM with 256x49 mixtures, (each speaker GMM has 256 mixtures). Then the score
produced by this super GMM is subtracted from the score produced by the claimed speaker
GMM. In the case of AHS classifiers we estimate the non-class score as the arithmetic mean
of the other 49 speaker scores. To compute the miss and false positive rates we compare the

1Arithmetic harmonic sphericity classifiers pull together all vectors belonging to a class and fit a
single full covariance Gaussian model to the data. Similarly, a single full covariance model is fitted to
each testing utterance. The similarity between the testing utterances and the class models is measured
according to Eq. (6). The class with the minimum distance is chosen as the winning class.



decision scores to a thresholdΘ. By varyingΘ we can compute Detection Error Tradeoff
(DET) curves as the ones shown in Fig. 1.

We compare the performance of all the 5 classifiers in speaker verification and speaker
identification tasks. Table 2 shows equal-error rates (EER’s) for speaker verification and
accuracies of speaker identification for both speech corpora.

Table 2:Comparison of all the classifiers used on the HUB and KING corpora. Both clas-
sification accuracy (Acc) and equal error rates (EER) are reported in percentage points.

Type of HUB HUB KING KING
Classifier Acc EER Acc EER

GMM 87.4 8.1 68.0 16.1
AHS 81.7 9.1 48.3 26.8

SVM Fisher 62.4 14.0 48.0 12.3
SVM GMM/KL 83.8 7.8 72.7 7.9
SVM COV/KL 84.7 7.4 79.7 6.6

We also compared the performance of 4 classifiers in the image classification task. Since
the AHS classifier is not a effective image classifier we excluded it here. Table 3 shows the
classification accuracies.

Table 3:Comparison of the 4 classifiers used on the COREL animal subset. Classification
accuracies are reported in percentage points.

Type of Accuracy
Classifier

GMM 82.0
SVM Fisher 73.5

SVM GMM/KL 85.3
SVM COV/KL 80.9

Our results using the KL divergence based kernels in both multimedia data types are quite
promising. In the case of the HUB experiments all classifiers perform similarly in both
speaker verification and identification tasks with the exception of the SVM Fisher which
performs significantly worse. However, For the KING database, we can see that our KL
based SVM kernels outperform all other classifiers in both identification and verification
tasks. Interestingly the Fisher kernel performs quite poorly too. Looking at the DET plots
for both corpora we can see that on the HUB experiments the new SVM kernels perform
quite well and on the KING corpora they perform much better than any other verification
system.

In image classification experiments with the COREL database both KL based SVM kernels
outperform the Fisher SVM; the GMM/KL kernel even outperforms the baseline GMM
classifier.

6 Conclusion and Future Work

In this paper we have proposed a new method of combining generative models and dis-
criminative classifiers (SVM’s). Our approach is extremely simple. For every multimedia
object represented by a sequence of vectors, a PDF is learned using maximum likelihood
approaches. We have experimented with PDF’s that are commonly used in the multimedia
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Figure 1:Speaker verification detection error tradeoff (DET) curves for the HUB and the
KING corpora, tested on all 50 speakers.

community. However, the method is generic enough and could be used with any PDF. In the
case of GMM’s we use the EM algorithm to learn the model parametersθ. In the case of a
single full covariance Gaussian we directly estimate its parameters. We then introduce the
idea of computing kernel distances via a direct comparison of PDF’s. In effect we replace
the standard kernel distance on the original dataK(Xi, Xj) by a new kernel derived from
the symmetric Kullback-Leibler (KL) divergenceK(Xi, Xj) −→ K(p(x|θi), p(x|θj)).
After that a kernel matrix is computed and a traditional SVM can be used.

In our experiments we have validated this new approach in speaker identification, verifica-
tion, and image classification tasks by comparing its performance to Fisher kernel SVM’s
and other well-known classification algorithms: GMM and AHS methods. Our results
show that our new method of combining generative models and SVM’s always outper-
form the SVM Fisher kernel and the AHS methods, and it often outperforms other clas-
sification methods such as GMM’s and AHS. The equal error rates are consistently better
with the new kernel SVM methods too. In the case of image classification our GMM/KL
divergence-based kernel has the best performance among the four classifiers while our sin-
gle full covariance Gaussian distance based kernel outperforms most other classifiers and
only do slightly worse than the baseline GMM. All these encouraging results show that
SVM’s can be improved by paying careful attention to the nature of the data being mod-
eled. In both audio and image tasks we just take advantage of previous years of research in
generative methods.

The good results obtained using a full covariance single Gaussian KL kernel also make
our algorithm a very attractive alternative as opposed to the more complex methods of
tuning system parameters and combining generative classifiers and discriminative methods
such as the Fisher SVM. This full covariance single Gaussian KL kernel’s performance
is consistently good across all databases. It is especially simple and fast to compute and
requires no tuning of system parameters.

We feel that this approach of combining generative classifiers via KL divergences of derived
PDF’s is quite generic and can possibly be applied to other domains. We plan to explore its
use in other multimedia related tasks.
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